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tary groups. Far an atomic I shell, we find that the group complementary to the basic quark 
group U(2') is isomorphic to the double group of the tesseract, W:. Character tables for 
W: and its subgroup SW: are provided. When 1 = 3 ,  the extra symmetry afforded by the 
automorphisms of SO(8) shows up by providing two further complementary groups. T h e  
group SO,,(3)"xSOs(3)" is complementary to SO(7)" and the group W:, also isomorphic 
to  the group of the tesseract, is complementary to SU(7)'. T h e  quark states of the f shell 
are calculated by diagonalizing a suitably chosen W: scalar operator, and the generalization 
to  the g shell is discussed. 

1. Introduction 

The concept of  atomic quarks introduced recently [l-31 has proved to be a valuable 

atomic I shell may be constructed by coupling together just four objects (quarks), each 
quark belonging to the Z'-dimensional spinor irreducible representation (irrep) o f  
SO(21+1). Two parity labels are needed to complete the construction. Having intro- 
duced the quark it is natural to consider transformations among its 2' components, 
leading us to study the group U(2') and its subgroups. Depending on the nature of 
the quark angular momentum we can introduce the groups SO(2') (for integral quark 
angular momentum), Sp(2') (half-integral quark angular momentum) and SO(21+2). 
The group schemes for integral (half-integral) quark angular momentum are 

too! in understanding the subt!eties of the a!Qmk f shellt The idea is that states of an 

u(2')3s0(z')(sp(2'))3s0(21+1) 

U(2')3SO(21+2) 3S0(21+1).  

W h C "  we pu! ! = 3 in equations ( !) we have that 2' = 2! + 2 = x and the two schemes 
are identical. In the first scheme the 8-dimensional irrep [l]  of U(8) is associated with 
the 8-dimensional irrep (1000) of SO(8), while in the second it is associated with the 
8-dimensional spinor irrep (ifif). Clearly, these two irreps must be equivalent, and 
indeed we have here an example of the automorphisms exhibited by SO(8).  These 
automorphisms may be visualized as permutations of the three arms of the Dynkin 
diagram for SO(8) that leave it invariant [4]. 

In our analysis of the f shell we have used the automorphisms of SO(8) in a slightly 
different manner from that indicated above. We prefer to reserve the irrep (1000) of 
SO(8) for a single quark, and to indicate the automorphisms in the form of three 
alternatives for X in the reduction SO(8) 3 X 3 G 2 ,  where GZ is Cartan's exceptional 
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group. The group X can be the SO(7) introduced by Racah [SI or one of the two 
SO(7) s first introduced by Labarthe [6] in connection with atomic quasiparticles. We 
indicate the latter by SO(7)' and SO(7)". The generators for the three SO(7) groups 
have been described elsewhere in detail, both in terms of quasiparticles [3] and in 
terms of quarks [7]. A single quark has the angular momentum structure s +f and can 
be thought of as deriving from ($if) of S0(7) ,  (lOO)'+(OOO)' of S0(7)', or (ff!)" of 
SO(7)". 

An aspeci of ihe aiomic-quark modei noi yei siudied concerns ihe naiure of iis 
complementary groups. The idea of the complementary group was introduced by 
Moshinsky and Quesne [8] and, in those cases where such a group exists, gives us an 
alternative, yet equivalent, way of characterizing the states of a system. Atomic physi- 
cists have used the complementarity of S0(21+ 1 )  to S0,(3) x S0,(3), where the latter 
is the product of rotation groups in the quasispin and spin spaces, to yield relations 
between the matrix elements of operators with well-defined spin and quasispin ranks. 
The idea has been explored in a broader context in nuclear physics [9]. Le Blanc and 
Rowe [ 101 have indicated how the principle of complementarity is related to a technique 
of Biedenham et a/ [ 113 introduced to resolve the outer multiplicity problem for SU(3). 
Several authors have used the idea of a dual basis to calculate recoupling coefficients 
for a group by invoking the properties of its complementary group [12-141. 

In this paper we discuss the idea of the Complementary group as it applies to the 
quark model of the atom. Because of the rich structure in the atomic f shell associated 
with the automorphisms of SO(8). new possibilities arise for further complementary 
group structure. We find several new cases, two of which are based on the group of 
the tesseract (the 4-dimensional cube) and one of which is of use in simplifying 
construction of the quark states. 

B R Judd and G M S Lister 

2. Generators 

The atomic quasiparticles 8 are introduced through the defining relation 

(2) t - I 112 b+l&-m 
[akfm,+(-1) 

.~. L... .t,., ... ..... :.- ,.-- :L:,-A:--, E^_ .L^ ^,^^ .---" ..,:.I. I " - A  - wncrc U (U) arc Errauuii (anmmranuri~ opciaruis LUL LIIC- CIC~LLIUIIJ w u i i  mS niiu r r q  

values indicated by subscripts [15]. The pairs (ms, b)=(f ,O) ,  ( f ,  - l ) ,  (-$,O) and 
(-f, - 1 )  serve to define the four possibilities A,  p, U and .$ for 8. We note that the 
tensors O obey the relations A' = A, pt = -p, ut = U and tt = -6. 

The coupled tensors (OtO)'*', for k odd, form the generators of the group SO,(ZI+ 
1). Summing over 0, we obtain the generators of Racah's S0(21+1) [5] which is the 
group familiar to us from classical atomic spectroscopy. However, many more groups 
can be obtained by forming products of more than two Os. For f electrons we consider 
0" for n = 0, 2, 4 and 6 and assign SO(7) irreps to the products to obtain 

(gO)(OW), (@2)(1lO), (@4)(lll), (06)(1001. (3) 

The whole collection comprises 64 operators and forms the generators of U,(8). Taken 
together, the operators (02)("0) and ( Os)(loo) form the generators for S0,(8) and (02)'"'' 
are the S0, (7)  generators. When summing over 8 to obtain groups relevant t o  the 
entire f shell, we must remember to include the 0 dependent phase E"", where E = 1, 
-1, 1 ,  and -1 for 8 = A ,  p, v, and 6 respectively. The need for this phase arises because 
we chose to write 8" rather than (Ot)"'20"'2 for the terms in the sequence (3). 
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2.1. Spin and quasispin stmciure 

The operators (#z)'"nl can connect f-electron states that are diagonal in electron 
number as well as states differing by two electrons. The situation for (04)'"') and 
(#6)"M11 is similar in that these operators have parts that change particle number N 
by 0, *2,  i 4  and 0, *2, i 4 ,  i 6  respectively. However, when summed over 0 with the 
appropriate phase factor, those parts changing N by *2 and i6 disappear. In the 
language of quasispin; we say that the group generatnrs can change the z-component 
of 0 by A M ,  = 0, i 2 .  A precisely similar situation arises with regard to the r-component 
of S, that is AM, = 0, *2. It turns out that AMQ and AMs are not entirely independent 
of each other and the pairs (AMQ, AMs)  = (0, *2) and (i2,O) are not allowed. Labarthe 
has discussed this aspect of multiple products of quasiparticles [ 6 ] .  

The duality between spin and quasispin is no accident since, under closer examin- 
ation, the generators of U(8) are found to be invariant under spin-quasispin interchange. 
The possible values for the spin ( K )  and quasispin ( K )  ranks for the operators in 
equation (3) can be found by referring to Flowers' tables of charge-spin supermultiplets 
[16]. For example, for (04)'"" we see that (KK)= (OO), (11) and (22). However, when 
summed over 0 we find that all of the possible ( K K )  pairs no longer appear. Just which 
of the possible values are present must be determined by direct calculation and it turns 
out that the U(8) generators have the following mixtures of ( K K )  values: 

y(eo)(ooO1: (00) 

where the primes on the summations indicate that the appropriate phase factors E " ' ~  

have been included. 

3. W, and its double group W: 

The generators of U(8) are not only invariant under spin-quasispin interchange; the 
operations of particle-hole conjugation and spin (or quasispin) reversal also leave 
them invariant. In order to discuss further symmetries we introduce some notation. 
We adopt the symbol (abcd) to represent the following permutation of the basic 
quasiparticles; A+a, p+ b, u + c  and ( + d ,  where a, b, c or d may be another 
quasiparticle or a phase times a quasiparticle. It is straightforward to show that the 
operations of spin-quasispin interchange, particle-hole conjugation and spin-up and 
spin-down interchange are given by the following permutations: (A p U -[}, 
{ u - ( - A p ]  and{u(Ap). 

We can see from equations (4) that permutations of the quasiparticles are good 
candidates for operations that leave invariant the U(8) generators, and the generators 
of its subgroups. We must be careful, however, to ensure that permutations of the 

tion relations, and we are forced to consider permutations such as {-A iu i(p}, where 
i =a. Under this permutation, the relations 

quasipa*ic;es Yi& peimuiaiioiij fOitheii a+$iits that piejer<e ;he basic aniii.o"uia- 

[e',, e,,,.],=(-~)'-~+~[e-,,,, e , . ] + = s ( m ,  in') 
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remain unchanged, since the factors i2 entering when the substitutions p+ iu  and V +  i t  
are made exactly compensate the factors (-lib that differ for the pairs (p,  U )  and 
(U,[). At the same time, the SO(7) generator 

B R Judd and G M S Lister 

( A A ) [ ~ ) - ( ~ ~ ) @ ) +  ( u u ) ( k ) -  ( t p  (fork odd) ( 5 )  
becomes 

( A A ) ( ~ ) - -  (i)’( U U ) ‘ ~ ’  + (i)z(t&)‘k’ - ( p ~ ) ( ~ )  

and is thus left invariant. That this permutation leaves the remaining U(8) generators 
invariant follows directly from equations (4). From this simple example it is not difficult 
to see that any permutation {&,A eZiuE&e4pf, where ei can be *l, will reproduce the 
required result. For a fixed choice of E s, there are 24 permutations which close under 
multiplication (by multiplication, we mean the usual rule for a product of permutations) 
to give the group S4, the permutation group on four objects. Allowing each E to be 
*l independently, we find that the 24 x 24 = 384 operations again close under multiplica- 
tion and form a group isomorphic to the symmetry group of the tesseract [17]. We use 
the symbol W4 to denote this group although it has many different names throughout 
the literature [18-211. 

The 4-dimensional (irreducible) representation of W, that we have just described 
is not the most convenient for use with our U(8) group because there is no simple 
connection with the spin and quasispin. W-e can generate a 6-dimensionai (irreducibie) 
representation by considering the action of our basic permutations on the components 
of the spin and quasispin vectors: 

S, =f(21+ 1)”2[(A~)(o’-(p~)‘n’]  

S, = $(21+ 1 )”’[i(p~)(O’ - ~(AU)‘~’] (6 )  
S, =f(21+ l ) ’ /z[(Ap)(n’-  (ut)‘”] 

and 

Qx = f(2/+ 1)*~’[ - (A~)‘”- (p~)‘”]  

Q, =f(21+1)1~2[-i(p~)‘o’-i(Au)‘o’] (7) 

0, = f(21+ 1 )‘I2[(A@ )‘’) + (ut)“)]. 
Permutations of the O s  induce permutations among the components of S and Q, and 
we denote the permutation S, + a, S,+ b, S, + e, Q, + d, Q, + e and Q, +f by the 
symbol {abcdef].  In table 1 we list representative permutations for the 4- and 6- 
dimensional irreps considered above; one for each class of W4. Also listed in table 1 
are the number of elements in each class. Our classes are ordered in the the same way 
as those listed by Littlewood 1191. 

The characters for this group have been worked out by several authors [18-211. A 
glance at Littlewood’s character table [19] indicates that this group is itself a double 
group; a result that we might have anticipated since the basic quasiparticles belong to 
the irrep D, /2  x D,12 of S0,(3) x S0,(3). The single-valued representations have bases 
with integral spin and quasispin. When we consider the effect of W, transformations 
on basis states with integral spin and half integral quasispin, we find that we need to 
go to its double group W: in order to correctly classify these states. To proceed further 
we construct a 4-dimensional representation in the basis given by the direct sum of 
states with S = 0, Q = f and S = f, Q = 0. The matrices of this representation are 
determined by noting that the permutations listed in table 1 for the 6-dimensional 
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Table 1. Listing of the classes of the groups W, and W:. The number of elements in a 
class is listed under the heading D ;  columns 3 and 4 contain representative group elements 
for each class for the permutations of the quasiparticles (column 3 )  and for the components 
of S and Q (column 4). Column 5 contains a representative group element for each of 
the classes of the group Wg. The classes are listed in the same order as those of Littlewood 
WI.  

Class D [ a b e d )  [n'b'e'  d' e'f') { a 6 ? d )  

1 1 
2 4 
3 12 
4 12 
5 6 
6 32 
7 24 
8 24 
9 4 

10 32 
11 48 
12 48 
13 12 
14 24 
15 12 

32 16 
17 32 
I8 12 
19 12 
20 1 

irrep, based on Sand  Q, are easily converted into rotations. For example, the representa- 
tive permutation from class 11, {-Sz -S, -S, Q, Q, -Qx},  corresponds to a product 
of three rotations: the first by -7r/2 about the y-axis in quasispin space, the second 
by 7r about the z-axis in spin space and the third a rotation by 7r/2 about the y-axis 
in spin space. Some operators in the 6-dimensional irrep, for example, those from 
classes 1 and 203 are identical and we must determine the form of the corresponding 
rotations by appealing to the known transformations of the 4-dimensional bases with 
S = 5 and Q = i. Once we have the rotation operators, their matrix elements are evaluated 
using angular momentum theory. It is a straightforward matter to find the new class 
structure when we augment the representation matrices by -1, the matrix of the 
operation corresponding to rotation by 27r in both spin and quasispin space. It turns 
out that five new classes appear, deriving from classes 1, 3, 10, 11 and 13. We denote 
theseasclasses 1*,3*, lO*,ll*and 13*.Thus WThasfivenewrepresentations(r,,-r,,) 
whose characters we have worked out and tabulated in table 2. In table 2 we give only 
those characters for the new irreps of W:. The complete character table for W: can 
be obtained by augmenting Littlewood's table [19] with the entries of table 2 and 
noting that for the single-valued irreps, the characters for the new classes C* satisfy 
the relation ,y(C*) = ,y (C) ,  where C is the class in W, from which C* is derived. 

3.1. A subgroup of W, 

The group W, is too general for our purposes, since it contains an element interchanging 
the spin and quasispin. We usually wish to work within a single irrep of SOQ(3) x S0,(3) 

I 
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- *  - N  
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and so restrict our attention accordingly. The group we seek is obtained simply by 
striking out those entries in table 1 for which the Q s  appear to the left of the S s .  In 
other words we remove all elements in classes 2, 4, 6, 7, 9, 12, 14, 17 and 18. The 
remaining 192 elements again form a group. This group has been studied by Baake et 
a1 [ZO, 211 who denote it as SW,. We have used standard techniques (see for example, 
[22]) to work out its classes and characters. In table 3 we list a representative element 
from each class for the 4- and 6-dimensional representations considered earlier. Our 
notation is designed to indicate from which class of W, the classes of SW, derive. For 
example, class 13 of W, gives rise to two classes in SW,, 13 and 13'; the reason being 
that the elements needed to put the members of classes 13 and 13' into the same 

Table 3. Listing of the classcs of the group SW,. The number of elements in a class is 
listed under the heading D ;  columns 3 and 4 contain represen!ative group elements for 
each class for the permutations of the quasiparticles (column 3) and for the components 
of S and Q (column 4). Classes are labelled according to their origins in W,. Classes with 
primes attached derive from a single class of W,. 

Class D ( a b e d )  [ d b c ' d ' e ' f ' )  

Tablp 4. me characters for the i m p s  of SW?. Columns are labelled by the class and below 
the class label, the number of elements in that class. 

1 3 5 8 10 11 11' 13 13' 15 16 19 20 
1 12 6 24 32 24 24 6 6 12 32 I2 I 

r , 1  I I I I I 1 1  I 1 1  I I 
r , i  -I 1 - 1  1 - 1 - 1  I 1 - 1  I I I 
r 3 2  o 2 0 - 1  o o 2 2 0 - 1  2 2 
r , 3  I 3 I 0 - 1 - 1 - 1 - 1  1 0 - 1  3 
rs 3 - I  3 -I o I 1 - I  - I  - 1  o - I  3 
r , 3  1 - 1 - 1  0 - 1  1 - 1  3 I 0 - 1  3 
r , 3  1 - 1 - 1  0 1 - 1  3 - 1  1 0 - 1  3 
r8 3 - I  -I I o I - 1  - I  3 - I  o - I  3 
r9 3 -1 - I  I o - I  I 3 - I  - I  o -1  3 

r l , 4  2 o o I o o o 0 - 2 - 1  0 - 4  
r , , 4  -2 o o I o o o o 2 - 1  0 - 4  
r , , ~  o o 0 - 1  o o o o o I 0 - 8  

r , , 6  0 - 2  0 0 0 0 - 2 - 2  0 0 2 6 
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conjugacy class are of the type that interchange spin and quasispin and are not present 
in SW,. For SW,, the 6-dimensional representation is not irreducible; it transforms as 
r6+r,. The 4-dimensional representation remains irreducible and transforms as r,, . 
The character table for SW, is presented in table 4, where we see again that SW., is 
itself a double group. We shall he interested in bases for irreps of SW, with integral 
spin and half-integral quasispin and so shall need to consider SW:, the double group 
of SW,. Following the procedure outlined in section 3 for W,, we find that 10 new 

characters for these new irreps and again appeal to the relation ,y(C*)=,y(C) to get 
the characters of the single-valued irreps for the new classes. 

B R Judd and G M S Lister 

^I^^^"^ ------ F-- El.,* "..-I l."..-- r n  :---" l- l. I- ."LÎ  c ... " ..:...- .L̂  
L . I ~ D ~ = >  appcm IUL auu U G U G . ~  1" u r w  U A G ~ ,  1 1 4 - 1  2 3 .  LU UUK J WG si'vr LEK 

4. U(2') and complementarity 

Diagonalizing an operator that is a scalar with respect to SW: in an SOs(3)xSOQ(3) 
basis yields states that transform as bases for irreps of SW:. We know that the U(8) 
generators are invariant under W: transformations and hence under SW: transforma- 
tions also; so by diagonalizing the U(8) generators we obtain states transforming as 
bases for SW: irreps which have, at the same time, good U(8) labels. Under certain 
circuiiiiistancea ieveise of iXis 
suitably chosen SWf scalar we get states that transform as bases for irreps of U(8). 
This idea is familiar to us from atomic physics, where the diagonalization of Q2 and 
S2, both of which commute with the generators of S0(21+1), yields states with good 
S0(21+1) symmetry. The labels obtained this way, namely, Q and S on the one hand 
and the SO(21+1) irrep labels on the other, are complementary in the sense of 
Moshinsky and Quesne [8]. That is, specifying S and Q uniquely determines the 
SO(21fl) labels. 

A good candidate for an SW: scalar, to play an analogous role to that of Q2 and 
S2, is 

maq' be iiiie, ihzi is, kY *iagoiiag*iiig a 

2 Q ~ ' S ~ 2 ' + ( Q ~ ' + Q ~ ~ ) ( S ~ 2 ' + S ~ ~ )  (8) 

... L... A ( 2 )  ̂ __I d 2 '  i_^ _^_,_ 1 & ^ ^ ^ ^ _ ^  ... :.l. ^-L:r-^-.. ^+-~.."rL^ :- *I.- .̂."":"..:.. "..A wncrc v anu i. aic cai i l i -~  L C ~ ~ ~ D U L D ,  W L W  a r u i n a r y  n u c ~ g ~ m ,  UL uir ~ U ~ ~ L D ~ L U  .UY 

spin spaces. The K ,  K, M K  and M, structure of (8) matches that of the third of 
equations (4) except for an ineffective part with (KK)=(OO). We find that by diagonaliz- 
ingequation@)inthebases(Q, S)=(O,f),(O,!), (O,$),(l,f),(l,I)and(Z,f)weobtain 
just those states for the d shell calculated earlier by diagonalizing the many-electron 
U(4) generators [3]. It turns out that there is a one-to-one correspondence, for Q 
integral and S half-integral, between the U(4) irreps and the SW: irreps and so we 
can say that SW: is the complementary group to U(4). The same correspondence exists 
for the case of Q half-integral and S integral. If we follow the definition of Moshinsky 
and Quesne [8] in the strictest sense, our statements concerning complementarity are 
not quite correct since the correspondence should hold for a single irrep of SW:. 
However, by limiting our attention to one half of the atomic shell we are assured that 
our remarks are not in error; and should the need arise we can always rephrase our 
language in terms of W: for which the correspondence is unique. We find by direct 
calculation that an analogous relationship holds for the irreps of U(8) and those of 
SWT for the f shell, and it is seems likely that SW: (or strictly speaking W:) is the 
complementary group to U(2'). The correspondence between irreps of U(8) and SW: 
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Because of the isomorphism between U(4) and S 0 ( 6 ) ,  W: serves as the complemen- 
tary group to both; however, this is not the case for higher I, and we must attempt to 
construct SW: scalars that can separate the U(2') states on the basis of the groups 
appearing in the sequences ( i  j. For f eiectrons we need an operator with K =j  and 
~ = 3  in order to correctly match the spin and quasispin of the fourth of equations (4), 
and which can change MQ and Ms by 0 or *Z, subject to the restrictions discussed in 
section 2.1. We can see from table 6 that only one SW; scalar can be constructed from 
tensors for which K = K = ~ ,  and the following operator has all the required properties: 

(0~3)'-0(3)')(~(3)-~(3)') ._ --Z.. 2 -2: (10) 

Table 6. Branching rules for the reduction SOQ(3)xSO,(3)-SW:. 

0 
O 
f 
0 
1 
0 

0 
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2 
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3 
0 
4 
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In table 7 we give the U(8) and SO(8) classification of the states of the f shell obtained 
using equations (8) and (10). Only one quarter of the states are listed; those with parity 
labels gg, gu and ug can be obtained using the following equations: 

B R Judd and G M S Lister 

Table 7. States of the f shell with parities "U. The labels a, b, c attached to the irreducible 
representations of SO@) distinguish states on the basis of the U(8) representations specified 
in the adjacent column for the spin-up and spin-down spaces. The quasispins Q and spins 
S are indicated by prefaced multiplicities ZQ+ I and 2S+ 1 to W. 
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5. Generalizations 

The generalization of these ideas to higher I values is straightforward. The generators 
of U(2') are invariant under W: and SW: transformations and so these groups again 
provide the base upon which we construct our quark states. The analysis becomes 
more complicated due to the increasing number of (KK) values associated with the 
U(2') generators. For g electrons, for example, we have the situation that the generators 
of U(16) have in addition to parts with ( K K )  = (00), (22) and (33), contributions with 
( K K )  = (44), for which MK and M, can assume the values 0, 12, or 14. The components 
MK and M, d o  not take on these values independently: the actual values assumed 
are discussed below. The distribution of the ( K K )  among the various generators of 
U(16) can be found by extending the analysis of Flowers [16]. The generators of the 
subgroups of U( 16), found by setting I = 4 in equations ( I ) ,  along with their various 
mixtures of ( K K )  values are as follows: 

SO(9): r ( O y W )  (00) 

SO( IO): I,( O2)'"00', r( O8)"OW' 

SO(16): ~(82)( '100),  2(06)('110) 

(OO), (221, (33L (44) 

(001, (221, (33) 

(12) 

where the superscripted numbers give the transformation properties with respect to 
SO(9) and the primes attached to the summatioils have the same significance as in 
equations (4). U(16) has one additional generator, namely X'(04)1"''1, for which 
(KK)=(OO) and (22). We find by looking at table 6 that (44) of SOQ(3)XSOs(3) 
contains r, of SW: twice, and hence we can construct two SW: invariants from tensors 
with spin and quasispin ranks of 4. Knowing that the U(16) generators cannot have 
parts that change M K  and M, by 1 1  or *3, we can use the octahedral eigenfunctions 
given by Lea er al [23] to help us construct the two following invariants: 

(13)  ((a) Q4 (14) Qo +(a) Q-4)((&)"*sk"+(d o (z) s-4) 

and 

((Tz) 4 4  (24) 00 +(a) Q-~)((~) ' /2Sk"'-(~!)1/2Sb4'+ (&)''2Syi) 

5 1/2 (4)+ 14 v 2  141 5 l / Z  141 14 1/2s(41+ 5 1/2 (41 

7 1/2 14)- lo 1/2 (4) 7 1/2 (41 

+ (QY) + Q!!i)( sp + SF;). (14) 
It is to be noticed that the values of the pairs ( M K ,  M.) are restricted. For example, 
the values (4,2) and (2,O) never appear; the allowed values of MK and M. just match 
those of the U( 16) generators. We have found that by diagonalizing some combination 
of the operators of equations (8), (lo), (13) and (14), it is possible to obtain the states 
of the g shell in both schemes of equation (1). We find, for example, in the U(16) 3 

SO( 16) 3 SO(9) scheme the following gg parity states as linear combinations of the 
kets IMQ Ms (w,wzw,w*)):  

ZQ+l,2S+I 

/[4](00.. 0)(0000)) 

1[22](00.. 0)(0000)) 

1[22](220.. 0)(0000)) 

=(&)"'l-;o '" '(0000))+(~) I 1 / 2 ~ 0 1 0 . 1  l 2  (0000))+(y'1-40 '"~~(0000)) 

= - ( & ) l / 2 I - & O  '"J(OOOO))-(ao) l 2  (0000) )+(~) "~~-50 '"'(0000)) 

= - ( & ) ' / 2 \  - t 0 '"J(OOoO))+ ($)'/2\{ 0 '"qoooo)) 

I 1 / 2 z 0  IO., (15) 
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SO( 10) 3 SO(9) scheme, we have: 

~[4](20000)(0000)) 

I[ 22]( 20000)( 0000)) 

1[22]( 00000)(0000)) 

= ( & ) ‘ / Z I - - ? O  2 ‘ ~ ‘~ (oooo) )+ (n )  I 1 / 2 1  l 2  0 ‘”‘(oooo))+(~)’/’l-to ~~~‘(0000)) 

9 1 / 2 z 0  IO,, 
= -(m) 12 (OOOO))+ (&)‘I21 - E  0 ‘“~‘(0000)). 

There appears to be no difficulty in extending this approach to cope with higher I values. 

6. Complementary group to SO(7)” 

With respect to the group S0(7)”, a single quark transforms as (fif)” and the states 
of the f shell can be constructed by considering the product ((ff!)”)‘. The SO(7)”irreps 
appearing in this scheme are identical to those that arise for the analysis based on 
S0(7),  so we anticipate a complementary group SOQ(3)”xSO,(3)” in analogy with 

the generators of SO(7) and S0(7)”, as expressed in terms of the annihilation and 
creation operators of the quarks s+ f [7], reveals that one can pass from one group 
to the other simply by reversing the phase of the s quark relative to the f quark. 
However, to convert the S and Q of equations ( 6 )  and (7) to S” and Q we need the 
corresponding substitutions for quasiparticles. These are not so easy to obtain. Our 
starting point is the observation that the seven components of a tensor 8 belong to 
the irreps (1100). (100) and (10) of S0,(8), S0,(7) and Go. The transformed 0, namely 
W, must belong to ( l l O O ) ,  (100)” and (10) of SO,(8), S0,(7)” and Gze. Thus (100) is 
replaced by (loo)”, but the other descriptions are unchanged. The only other irrep of 
SO(7) that derives from (1100) of SO(8) and contains (10) of G2 is (110), and the 
corresponding operator can only be provided by the quintuple tensor product ( 8s)(”a). 
We can conclude that the required substitutions are of the form 

&e familiar and quds~spin groups of ciassicai so(;) of 

8 +  ,y= A @ +  ~ ( @ S ) ( 1 1 0 ) ( 1 0 ) 3  

The two coefficients A and B can be found by requiring that the components of 8” 
satisfy the same anticommutation relations as those of 8. In terms of the components 
0, of the tensors 8, we ultimately arrive at the substitutions: 

e3 + e; = fe, + f(e3cIc2+ (8)‘/2e2e1 e0c,) 

e2+ e; = io2+ ;( e2c,c, + (8)’/2e,e,e_,~2) 

e l+  e; =;e, -f(e,c3c2+(8)1/2e3eoe_2c,) 

eo+ e; = ;eo+ $e,( e, c2+ c,c, - c2c3) 

ci =[e,, e-;]. 

(17) 

where 

Direct calculation shows that the substitutions (17) transform the generators of SO(7) 
into those of SO(7)”. and vice versa, while leaving invariant the generators of SO(7)’. 
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7. Complementary group to SU(7)' 

As an alternative to equation ( I ) ,  we consider the group scheme 

U(8) 1 Y  1 X  1G2 (18) 

where Y can be SU(7), SU(7)' or SU(7)" according to whether X is S0(7),  SO(7)' or 
SO(7)". We find that the complementary group to SU(7)' is a group isomorphic to W,, 
which we denote W;. To see this, consider the transformation { - v  -)I" -A" -U"}, where 
now we have added double primes to some of the quasiparticles appearing in the 
permutation to indicate that the substitutions (17) have been made for those quasiparti- 
cles. Applying this operation to the SU(7)' generators 2'(84)'200y shows that they do 
indeed remain invariant. Other SU(7)' generators are more difficult to handle when 
written in terms of quasiparticles, and a simpler way to proceed is to write them as 
&(fAh)(k), for k = 1,2 , .  , . , 6, noting that under the transformation e +  e", we have 
f , '+f, '  and s i +  -sJ, from which the required invariance follows. 

The new permutations considered above form the group W;, obtained by adding 
to the group of permutations among the quasiparticles, the substitution 0 -* 0". Making 
this substitution twice sends O +  (e")"+ e, so the operation of adding a double prime 
is formally similar to the sign change ei that we considered in section 3. This property 
ieaos IO me isomorpnism oeiween w 4  anu w4. in  iaoie I we iisi repreaenraiive gruup 
elements for each of the classes of W;, which are the images of the elements of W,, 
listed in column 3, under the isomorphism. 

We are now in a position to classify the SU(7)' states according to Wk. There are 
two ways to proceed; either by constructing states in the quasiparticle picture or by 
using our knowledge of the quarks. The first approach soon becomes very cumbersome, 
whereas in the second, states can be separated naturally according to the number of 
occurrences of a particular ml component among the quark creation operators. For 
example, the quark States f1,fL2ft~f:~lo), f12f:3ft~f$J), f : 2 f : ~ f t & V  and 
f~2f:2f~2f~310), which we denote collectively as {3222}, transform as T,+T, of W;. 
The states {3111}, {3000}, {3 - 1 - 1 - 1) . . . behave similarly; in other words, those 
states obtained by acting on the quark vacuum with four f-quark creation operators, 
three of which have identical ml values, transform as r, fry. A similar state of affairs 
exists for the other possible distributions of ml values among four quarks. In table 8 
we list, for the configurations f 4-"~n with OS n S 4, the transformation properties of 
the various types of states that can occur, along with the number of states of each 
type. The classification proceeds by starting from the state {3333), which has m, = 12 
and belongs to [4]' of SU(7)', and stepping down in units of m, until reaching m, = 0. 
At each stage those irreps of W; already assigned to SU(7)' states are subtracted out, 
allowing us to determine the complementary-group labels for the remaining SU(7)' 
states. The results are as follows: 

. ~ - < - . .  .L. ~~ ..I .->..,, 7-  ..L.. . .... .!.& .._._.__.̂ . :... 

[q=r , ,  [31ir=r,,  [221'=r5, [2111'=r,,  

p]'=r,,, [2 i i '=r ty ,  [ i i i ~ ' = r , ~  

[2j'= r,, 11 1 j . z  

[I] '= r,, 

F _  _.. 

[ol'=r,. 

( i P j  
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Table 8. Transformation properties with respect to W: of the various quark states in the 
configurations ( O r  n 6 4 ) .  The symbols in braces are the m, values ( - 3 r m , r 3 ) ,  
to be distributed among the four quarks. The number of states of a parlicular type is listed 
under the heading D. An explicit zero in the braces refers to the m, value of an E quark. 

J‘ 24 
12 

6 
4 
1 

f ’ s  24 
12 
4 

JV 12 
6 

f s 3  4 
$4 1 

8. Application 

Much of the discussion in this paper has been of a formal nature. An example of the 
usefulness of the complementary group idea in the atomic quark model should serve 
to bring us into contact with our previous analysis. In [l]  we considered the three- 
electron operator t4, used in configuration-interaction studies, and gave an explanation 
for the vanishing of the matrix element (f’(222)(30)1t41f’(221)(31)) in terms of the 
group SO(7)’. It turned out that the operator tb could be expressed as a two-quark 
operator of the form 

where the SO(8) and SO(7) labels are specified as superscripts. If, now, we tum to 
our complementary group Wk and consider the transformations of the six operators 

it  is straightforward to show that they belong to the representation rt+rS+ry and 
these, therefore, are the irreps available for labelling f4 .  The states appearing in the 
bra and ket of the above matrix element belong to r,, and Ty, respectively, so the 
matrix element has the form (r131r,+rs+rylr9), when written in terms of the com- 
plementary group representations. A matrix element with these W; labels must vanish, 
since the Kronecker product r I 3 x r 9  does not contain any of the irreps labelling the 
operator. Thus the complementary group W: has provided an alternative to our earlier 
approach. 

We anticipate other applications as we proceed to study 3-quark and 4-quark 
npeeratnrr. Just as the dependence of the matrix elements of operators on spin or 
quasispin has been usefully represented in the past by the 3-j symbols of the groups 
S0, (3)  and S0,(3), so we expect relations between our quark operators to involve 
Clebsch-Gordan coefficients for our new complementary groups. The absence of useful 
tabulations of such coefficients means that any proportionalities we might establish 
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between sets of matrix elements will lack numerical coefficients; but this would be a 
minor price to pay for the gain in structural information. 

9. Complementary group to G, 

Unexpected relations between matrix elements frequently occur in the f shell: indeed, 
they are the motivating force for the analysis presented above. Because all the states 
are characterized by irreps of G2, it is natural to ask whether a complementary group 
2 to G2 exists, and, if so, whether the surprising simplifications that have accumulated 
over the years could be explained at a single stroke in terms of the irreps of Z. As 
pointed out some years ago [24], this possibility would not yield anything of value if 
Z was simply the direct product 

(22) 

where the dimensions of the unitary groups are merely the number of occurrences of 
the irreps (40). (31), (30),. . . ,(OO). 

We are now in a position to construct a complementary group to G2 because we 
have at our disposal the four operators S, Q, S and Q which commute with the 
generators of G,.  If we take the various commutators of these four vectors, the 
commutators of these commutators, and so on, the fermionic character of the com- 
ponent creation and annihilation operators that form the resultant operators guarantees 
closure. Since S and Q" involve quintuple products of annihilation and creation 
operators, the procedure is technically difficult, and there seems no reason to suppose 
that an interesting early closure will be obtained. We have studied in detail what 
happens if attention is limited just to the spin-up space, and indeed a trivial direct 
product of unitary groups is produced. This a rather disappointing conclusion, but 
not, perhaps, too surprising. After all, there is no simple Lie group with irreps with 
the required dimensions 4, 8, 12,. . . ,60. There remains, however, the possibility that 
a finite group might exist to play the role of Z. It would have to be a subgroup of the 
product (22) and itself contain both W: and W& as subgroups. The smallest group to 
contain both W: and W!, comprises 12288 elements. Although the structure of this 
group can be identified as the double group of a wreath product (of D2 with S,) we 
prefer to set it aside as a topic for future study. 

U(4) x U(8) xU(12) x..  . x U(60) 
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