Complementary groups in the quark model of the atom

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 252615
(http://iopscience.iop.org/0305-4470/25/9/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:31

Please note that terms and conditions apply.

Complementary groups in the quark model of the atom

B R Judd and G M S Lister
Henry A Rowland Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA

Received 16 December 1991

Abstract

The quark model of the atom is studied with particular regard to its complementary groups. For an atomic l shell, we find that the group complementary to the basic quark group $\mathrm{U}\left(2^{l}\right)$ is isomorphic to the double group of the tesseract, W_{4}^{*}. Character tables for W_{4}^{*} and its subgroup SW_{4}^{*} are provided. When $l=3$, the extra symmetry afforded by the automorphisms of $\mathrm{SO}(8)$ shows up by providing two further complementary groups. The group $\mathrm{SO}_{Q}(3)^{\prime \prime} \times \mathrm{SO}_{S}(3)^{\prime \prime}$ is complementary to $\mathrm{SO}(7)^{\prime \prime}$ and the group W_{4}^{\prime}, also isomorphic to the group of the tesseract, is complementary to $\mathrm{SU}(7)^{\prime}$. The quark states of the f shell are calculated by diagonalizing a suitably chosen W_{4}^{*} scalar operator, and the generalization to the g shell is discussed.

1. Introduction

The concept of atomic quarks introduced recently [1-3] has proved to be a valuable tool in understanding the subtleties of the atomic f shell. The idea is that states of an atomic l shell may be constructed by coupling together just four objects (quarks), each quark belonging to the 2^{2}-dimensional spinor irreducible representation (irrep) of $\mathrm{SO}(2 l+1)$. Two parity labels are needed to complete the construction. Having introduced the quark it is natural to consider transformations among its 2^{l} components, leading us to study the group $U\left(2^{\prime}\right)$ and its subgroups. Depending on the nature of the quark angular momentum we can introduce the groups $\mathrm{SO}\left(2^{l}\right)$ (for integral quark angular momentum), $\mathrm{Sp}\left(2^{l}\right)$ (half-integral quark angular momentum) and $\mathrm{SO}(2 l+2)$. The group schemes for integral (half-integral) quark angular momentum are

$$
\begin{align*}
& \mathrm{U}\left(2^{l}\right) \supset \mathrm{SO}\left(2^{l}\right)\left(\mathrm{Sp}\left(2^{l}\right)\right) \supset \mathrm{SO}(2 l+1) \\
& \mathrm{U}\left(2^{l}\right) \supset \mathrm{SO}(2 l+2) \supset \mathrm{SO}(2 l+1) \tag{1}
\end{align*}
$$

When we put $l=3$ in equations (1) we have that $2^{\prime}=2 l+2=8$ and the two schemes are identical. In the first scheme the 8 -dimensional irrep [1] of $U(8)$ is associated with the 8 -dimensional irrep (1000) of $\mathrm{SO}(8)$, while in the second it is associated with the 8 -dimensional spinor irrep ($\frac{1}{2} \frac{1}{2} \frac{1}{2}$). Clearly, these two irreps must be equivalent, and indeed we have here an example of the automorphisms exhibited by $\mathrm{SO}(8)$. These automorphisms may be visualized as permutations of the three arms of the Dynkin diagram for $S O(8)$ that leave it invariant [4].

In our analysis of the f shell we have used the automorphisms of $\mathrm{SO}(8)$ in a slightly different manner from that indicated above. We prefer to reserve the irrep (1000) of $\mathrm{SO}(8)$ for a single quark, and to indicate the automorphisms in the form of three alternatives for \boldsymbol{X} in the reduction $\mathrm{SO}(8) \supset \boldsymbol{X} \supset \mathrm{G}_{2}$, where G_{2} is Cartan's exceptional
group. The group X can be the $\mathrm{SO}(7)$ introduced by Racah [5] or one of the two $\mathrm{SO}(7) \mathrm{s}$ first introduced by Labarthe [6] in connection with atomic quasiparticles. We indicate the latter by $\mathrm{SO}(7)^{\prime}$ and $\mathrm{SO}(7)^{\prime \prime}$. The generators for the three $\mathrm{SO}(7)$ groups have been described elsewhere in detail, both in terms of quasiparticles [3] and in terms of quarks [7]. A single quark has the angular momentum structure $s+f$ and can be thought of as deriving from $\left(\frac{1}{2} \frac{1}{2}\right)$ of $\mathrm{SO}(7),(100)^{\prime}+(000)^{\prime}$ of $S O(7)^{\prime}$, or $\left(\frac{1}{2} \frac{1}{2}\right)^{\prime \prime}$ of $\mathrm{SO}(7)^{\prime \prime}$.

An aspect of the atomic-quark model nōt yet studied concerns the nature of its complementary groups. The idea of the complementary group was introduced by Moshinsky and Quesne [8] and, in those cases where such a group exists, gives us an alternative, yet equivalent, way of characterizing the states of a system. Atomic physicists have used the complementarity of $\mathrm{SO}(2 l+1)$ to $\mathrm{SO}_{\mathrm{Q}}(3) \times \mathrm{SO}_{s}(3)$, where the latter is the product of rotation groups in the quasispin and spin spaces, to yield relations between the matrix elements of operators with well-defined spin and quasispin ranks. The idea has been explored in a broader context in nuclear physics [9]. Le Blanc and Rowe [10] have indicated how the principle of complementarity is related to a technique of Biedenharn et al [11] introduced to resolve the outer multiplicity problem for $\mathrm{SU}(3)$. Several authors have used the idea of a dual basis to calculate recoupling coefficients for a group by invoking the properties of its complementary group [12-14].

In this paper we discuss the idea of the complementary group as it applies to the quark model of the atom. Because of the rich structure in the atomic f shell associated with the automorphisms of $\mathrm{SO}(8)$, new possibilities arise for further complementary group structure. We find several new cases, two of which are based on the group of the tesseract (the 4-dimensional cube) and one of which is of use in simplifying construction of the quark states.

2. Generators

The atomic quasiparticles θ are introduced through the defining relation

$$
\begin{equation*}
\theta_{m}^{\dagger}=\left(\frac{1}{2}\right)^{1 / 2}\left[a_{m_{s} m_{t}}^{\dagger}+(-1)^{b+l-m_{i}} a_{m_{s}-m_{l}}\right] \tag{2}
\end{equation*}
$$

Where $a^{\dagger}(a)$ are creation (annihilation) operators for the electrons with m_{s} and m_{l} values indicated by subscripts [15]. The pairs $\left(m_{s}, b\right)=\left(\frac{1}{2}, 0\right),\left(\frac{1}{2},-1\right),\left(-\frac{1}{2}, 0\right)$ and $\left(-\frac{1}{2},-1\right)$ serve to define the four possibilities λ, μ, ν and ξ for θ. We note that the tensors $\boldsymbol{\theta}$ obey the relations $\boldsymbol{\lambda}^{\dagger}=\boldsymbol{\lambda}, \boldsymbol{\mu}^{\dagger}=-\boldsymbol{\mu}, \boldsymbol{\nu}^{\dagger}=\boldsymbol{\nu}$ and $\boldsymbol{\xi}^{\dagger}=-\boldsymbol{\xi}$.

The coupled tensors $\left(\boldsymbol{\theta}^{\dagger} \boldsymbol{\theta}\right)^{(k)}$, for k odd, form the generators of the group $\mathrm{SO}_{\theta}(2 l+$ 1). Summing over θ, we obtain the generators of Racah's $\mathrm{SO}(2 l+1)$ [5] which is the group familiar to us from classical atomic spectroscopy. However, many more groups can be obtained by forming products of more than two $\theta \mathrm{s}$. For f electrons we consider θ^{n} for $n=0,2,4$ and 6 and assign $\operatorname{SO}(7)$ irreps to the products to obtain

$$
\begin{equation*}
\left(\theta^{0}\right)^{(000)},\left(\theta^{2}\right)^{(110)},\left(\theta^{4}\right)^{(111)},\left(\theta^{6}\right)^{(100)} \tag{3}
\end{equation*}
$$

The whole collection comprises 64 operators and forms the generators of $\mathrm{U}_{\theta}(8)$. Taken together, the operators $\left(\theta^{2}\right)^{(110)}$ and $\left(\boldsymbol{\theta}^{6}\right)^{(100)}$ form the generators for $\mathrm{SO}_{\theta}(8)$ and $\left(\boldsymbol{\theta}^{2}\right)^{(110)}$ are the $\mathrm{SO}_{\theta}(7)$ generators. When summing over θ to obtain groups relevant to the entire f shell, we must remember to include the θ dependent phase $\varepsilon^{n / 2}$, where $\varepsilon=1$, $-1,1$, and -1 for $\theta=\lambda, \mu, \nu$, and ξ respectively. The need for this phase arises because we chose to write $\boldsymbol{\theta}^{n}$ rather than $\left(\boldsymbol{\theta}^{\dagger}\right)^{n / 2} \boldsymbol{\theta}^{n / 2}$ for the terms in the sequence (3).

2.1. Spin and quasispin structure

The operators $\left(\boldsymbol{\theta}^{2}\right)^{(110)}$ can connect f-electron states that are diagonal in electron number as well as states differing by two electrons. The situation for $\left(\boldsymbol{\theta}^{4}\right)^{(11)}$ and $\left(\theta^{6}\right)^{(100)}$ is similar in that these operators have parts that change particle number N by $0, \pm 2, \pm 4$ and $0, \pm 2, \pm 4, \pm 6$ respectively. However, when summed over θ with the appropriate phase factor, those parts changing N by ± 2 and ± 6 disappear. In the language of quasispin, we say that the group generators can change the z-component of Q by $\Delta M_{Q}=0, \pm 2$. A precisely similar situation arises with regard to the z-component of S, that is $\Delta M_{S}=0, \pm 2$. It turns out that ΔM_{Q} and ΔM_{S} are not entirely independent of each other and the pairs $\left(\Delta M_{Q}, \Delta M_{S}\right)=(0, \pm 2)$ and $(\pm 2,0)$ are not allowed. Labarthe has discussed this aspect of multiple products of quasiparticles [6].

The duality between spin and quasispin is no accident since, under closer examination, the generators of $U(8)$ are found to be invariant under spin-quasispin interchange. The possible values for the spin (κ) and quasispin (K) ranks for the operators in equation (3) can be found by referring to Flowers' tables of charge-spin supermultiplets [16]. For example, for $\left(\theta^{4}\right)^{(111)}$ we see that $\left(K_{K}\right)=(00),(11)$ and (22). However, when summed over θ we find that all of the possible ($K \kappa$) pairs no longer appear. Just which of the possible values are present must be determined by direct calculation and it turns out that the $U(8)$ generators have the following mixtures of $(K \kappa)$ values:

$$
\begin{align*}
& \Sigma^{\prime}\left(\boldsymbol{\theta}^{0}\right)^{(000)}:(00) \\
& \Sigma^{\prime}\left(\boldsymbol{\theta}^{2}\right)^{(110)}:(00) \\
& \Sigma^{\prime}\left(\boldsymbol{\theta}^{4}\right)^{(111)}:(00),(22) \tag{4}\\
& \Sigma^{\prime}\left(\boldsymbol{\theta}^{6}\right)^{(100)}:(00),(22),(33)
\end{align*}
$$

where the primes on the summations indicate that the appropriate phase factors $\varepsilon^{n / 2}$ have been included.

3. W_{4} and its double group W_{4}^{*}

The generators of $U(8)$ are not only invariant under spin-quasispin interchange; the operations of particle-hole conjugation and spin (or quasispin) reversal also leave them invariant. In order to discuss further symmetries we introduce some notation. We adopt the symbol $\{a b c d\}$ to represent the following permutation of the basic quasiparticles; $\lambda \rightarrow a, \mu \rightarrow b, \nu \rightarrow c$ and $\xi \rightarrow d$, where a, b, c or d may be another quasiparticle or a phase times a quasiparticle. It is straightforward to show that the operations of spin-quasispin interchange, particle-hole conjugation and spin-up and spin-down interchange are given by the following permutations: $\{\lambda \mu \nu-\xi\}$, $\{\nu-\xi-\lambda \mu\}$ and $\{\nu \xi \lambda \mu\}$.

We can see from equations (4) that permutations of the quasiparticles are good candidates for operations that leave invariant the $U(8)$ generators, and the generators of its subgroups. We must be careful, however, to ensure that permutations of the quasiparticles yield permutations for their adjoints that preserve the basic anticommutation relations, and we are forced to consider permutations such as $\{-\lambda \mathrm{i} \nu \mathrm{i} \xi \mu\}$, where $i=\sqrt{-1}$. Under this permutation, the relations

$$
\left[\theta_{m}^{\dagger}, \theta_{m^{\prime}}\right]_{+}=(-1)^{i-m+b}\left[\theta_{-m}, \theta_{m^{\prime}}\right]_{+}=\delta\left(m, m^{\prime}\right)
$$

remain unchanged, since the factors i^{2} entering when the substitutions $\mu \rightarrow \mathrm{i} \nu$ and $\nu \rightarrow \mathrm{i} \xi$ are made exactly compensate the factors $(-1)^{b}$ that differ for the pairs (μ, ν) and (ν, ξ). At the same time, the $S O(7)$ generator

$$
\begin{equation*}
(\boldsymbol{\lambda} \boldsymbol{\lambda})^{(k)}-(\boldsymbol{\mu} \boldsymbol{\mu})^{(k)}+(\boldsymbol{\nu} \boldsymbol{\nu})^{(k)}-(\boldsymbol{\xi} \xi)^{(k)} \quad(\text { for } k \text { odd }) \tag{5}
\end{equation*}
$$

becomes

$$
(\boldsymbol{\lambda} \boldsymbol{\lambda})^{(k)}-(\mathrm{i})^{2}(\nu \nu)^{(k)}+(\mathrm{i})^{2}(\boldsymbol{\xi} \xi)^{(k)}-(\mu \mu)^{(k)}
$$

and is thus left invariant. That this permutation leaves the remaining $\mathrm{U}(8)$ generators invariant follows directly from equations (4). From this simple example it is not difficult to see that any permutation $\left\{\varepsilon_{1} \lambda \varepsilon_{2} i \nu \varepsilon_{3} i \xi \varepsilon_{4} \mu\right\}$, where ε_{i} can be ± 1, will reproduce the required result. For a fixed choice of $\varepsilon \mathrm{s}$, there are 24 permutations which close under multiplication (by multiplication, we mean the usual rule for a product of permutations) to give the group S_{4}, the permutation group on four objects. Allowing each ε to be ± 1 independently, we find that the $2^{4} \times 24=384$ operations again close under multiplication and form a group isomorphic to the symmetry group of the tesseract [17]. We use the symbol W_{4} to denote this group although it has many different names throughout the literature [18-21].

The 4-dimensional (irreducible) representation of W_{4} that we have just described is not the most convenient for use with our $U(8)$ group because there is no simple connection with the spin and quasispin. We can generate a 6 -dimensional (irreducible) representation by considering the action of our basic permutations on the components of the spin and quasispin vectors:

$$
\begin{align*}
& S_{x}=\frac{1}{2}(2 l+1)^{1 / 2}\left[(\lambda \xi)^{(0)}-(\mu \nu)^{(0)}\right] \\
& S_{y}=\frac{1}{2}(2 l+1)^{1 / 2}\left[\mathrm{i}(\mu \xi)^{(0)}-\mathrm{i}(\lambda \nu)^{(0)}\right] \tag{6}\\
& S_{z}=\frac{1}{2}(2 l+1)^{1 / 2}\left[(\lambda \mu)^{(0)}-(\nu \xi)^{(0)}\right]
\end{align*}
$$

and

$$
\begin{align*}
& Q_{x}=\frac{1}{2}(2 l+1)^{1 / 2}\left[-(\boldsymbol{\lambda} \xi)^{(0)}-(\boldsymbol{\mu} \boldsymbol{\nu})^{(0)}\right] \\
& Q_{y}=\frac{1}{2}(2 l+1)^{1 / 2}\left[-\mathrm{i}(\boldsymbol{\mu} \xi)^{(0)}-\mathrm{i}(\boldsymbol{\lambda} \boldsymbol{\nu})^{(0)}\right] \tag{7}\\
& Q_{z}=\frac{1}{2}(2 l+1)^{1 / 2}\left[(\boldsymbol{\lambda} \boldsymbol{\mu})^{(0)}+(\boldsymbol{\nu} \xi)^{(0)}\right] .
\end{align*}
$$

Permutations of the θ s induce permutations among the components of S and Q, and we denote the permutation $S_{x} \rightarrow a, S_{y} \rightarrow b, S_{z} \rightarrow c, Q_{x} \rightarrow d, Q_{y} \rightarrow e$ and $Q_{z} \rightarrow f$ by the symbol $\{a b c d e f\}$. In table 1 we list representative permutations for the 4 - and 6 dimensional irreps considered above; one for each class of W_{4}. Also listed in table 1 are the number of elements in each class. Our classes are ordered in the the same way as those listed by Littlewood [19].

The characters for this group have been worked out by several authors [18-21]. A glance at Littlewood's character table [19] indicates that this group is itself a double group; a result that we might have anticipated since the basic quasiparticles belong to the irrep $D_{1 / 2} \times D_{1 / 2}$ of $\mathrm{SO}_{Q}(3) \times \mathrm{SO}_{s}(3)$. The single-valued representations have bases with integral spin and quasispin. When we consider the effect of W_{4} transformations on basis states with integral spin and half integral quasispin, we find that we need to go to its double group W_{4}^{*} in order to correctly classify these states. To proceed further we construct a 4-dimensional representation in the basis given by the direct sum of states with $S=0, Q=\frac{1}{2}$ and $S=\frac{1}{2}, Q=0$. The matrices of this representation are determined by noting that the permutations listed in table 1 for the 6 -dimensional

Table 1. Listing of the classes of the groups W_{4} and W_{4}^{\prime}. The number of elements in a class is listed under the heading D; columns 3 and 4 contain representative group elements for each class for the permutations of the quasiparticles (column 3) and for the components of S and Q (column 4). Column 5 contains a representative group element for each of the classes of the group W_{4}^{\prime}. The classes are listed in the same order as those of Littlewood [19].

| Class | D | $\{a b c d\}$ | $\left\{a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime}\right\}$ | $\{\bar{a} \bar{b} \overline{\mathrm{c}} \bar{d}\}$ |
| :--- | ---: | :--- | :--- | :--- | :--- |
| 1 | 1 | $\{\lambda \mu \nu \xi\}$ | $\left\{S_{x} S_{y} S_{z} Q_{x} Q_{y} Q_{z}\right\}$ | $\{\lambda \mu \nu \xi\}$ |
| 2 | 4 | $\{\lambda \mu \nu-\xi\}$ | $\left\{Q_{x} Q_{y} Q_{z} S_{x} S_{y} S_{z}\right\}$ | $\left\{\lambda \mu \nu \xi^{\prime \prime}\right\}$ |
| 3 | 12 | $\{\lambda-\xi \nu \mu\}$ | $\left\{S_{z} S_{y}-S_{x}-Q_{z} Q_{y} Q_{x}\right\}$ | $\left\{\lambda-\xi \nu-\mu^{\prime \prime}\right\}$ |
| 4 | 12 | $\{\lambda \xi \nu \mu\}$ | $\left\{Q_{z} Q_{y}-Q_{x}-S_{z} S_{y} S_{x}\right\}$ | $\left\{\lambda-\xi^{\prime \prime} \nu-\mu^{\prime \prime}\right\}$ |
| 5 | 6 | $\{\lambda \mu-\nu-\xi\}$ | $\left\{-S_{x}-S_{y} S_{z}-Q_{x}-Q_{y} Q_{z}\right\}\left\{\lambda \mu \nu^{\prime \prime} \xi^{\prime \prime}\right\}$ | |
| 6 | 32 | $\{\lambda \mathrm{i} \nu \mathrm{i} \xi \mu\}$ | $\left\{Q_{z}-Q_{x}-Q_{y}-S_{z} S_{x}-S_{y}\right\}\left\{\lambda \mathrm{i} \nu \mathrm{i} \xi-\mu^{\prime \prime}\right\}$ | |
| 7 | 24 | $\{\lambda-\mu \mathrm{i} \xi \mathrm{i} \nu\}$ | $\left\{-Q_{y}-Q_{x}-Q_{z} S_{y} S_{x}-S_{z}\right\}\left\{\lambda \mu^{\prime \prime} \mathrm{i} \xi-\mathrm{i} \nu^{\prime \prime}\right\}$ | |
| 8 | 24 | $\{\lambda-\mu \mathrm{i} \xi-\mathrm{i} \nu\}$ | $\left\{S_{y} S_{x}-S_{z}-Q_{y}-Q_{x}-Q_{z}\right\}\left\{\lambda \mu^{\prime \prime} \mathrm{i} \xi-\mathrm{i} \nu\right\}$ | |
| 9 | 4 | $\{-\lambda-\mu-\nu \xi\}$ | $\left\{Q_{x} Q_{y} Q_{z} S_{x} S_{y} S_{z}\right\}$ | $\left\{\lambda^{\prime \prime} \mu^{\prime \prime} \nu^{\prime \prime} \xi\right\}$ |
| 10 | 32 | $\{\lambda-\mathrm{i} \nu \mathrm{i} \xi \mu\}$ | $\left\{S_{z} S_{x} S_{y}-Q_{z}-Q_{x} Q_{y}\right\}$ | $\left\{\lambda \mathrm{i} \nu^{\prime \prime} \mathrm{i} \xi-\mu^{\prime \prime}\right\}$ |
| 11 | 48 | $\{-\mathrm{i} \mu \mathrm{i} \nu \mathrm{i} \xi \mathrm{i} \lambda\}$ | $\left\{-S_{z}-S_{y}-S_{x} Q_{z} Q_{y}-Q_{x}\right\}\left\{\mathrm{i} \mu^{\prime \prime} i \nu \mathrm{i} \xi \mathrm{i} \lambda\right\}$ | |
| 12 | 48 | $\{\mathrm{i} \mu \mathrm{i} \nu \mathrm{i} \xi \mathrm{i} \lambda\}$ | $\left\{Q_{z}-Q_{y} Q_{x}-S_{z} S_{y} S_{x}\right\}$ | $\{\mathrm{i} \mu \mathrm{i} \nu \mathrm{i} \xi \mathrm{i} \lambda\}$ |
| 13 | 12 | $\{-\nu-\xi \lambda \mu\}$ | $\left\{-S_{x} S_{y}-S_{z} Q_{x} Q_{y} Q_{z}\right\}$ | $\left\{-\nu-\xi-\lambda^{\prime \prime}-\mu^{\prime \prime}\right\}$ |
| 14 | 24 | $\{-\nu \xi \lambda \mu\}$ | $\left\{-Q_{x} Q_{y}-Q_{z} S_{x} S_{y} S_{z}\right\}$ | $\left\{-\nu-\xi^{\prime \prime}-\lambda^{\prime \prime}-\mu^{\prime \prime}\right\}$ |
| 15 | 12 | $\{-\lambda-\xi-\nu \mu\}$ | $\left\{-S_{z} S_{y} S_{x} Q_{z} Q_{y}-Q_{x}\right\}$ | $\left\{\lambda^{\prime \prime}-\xi \nu^{\prime \prime}-\mu^{\prime \prime}\right\}$ |
| 16 | 32 | $\{-\lambda \mathrm{i} \nu \mathrm{i} \xi \mu\}$ | $\left\{-S_{z}-S_{x} S_{y} Q_{z} Q_{x} Q_{y}\right\}$ | $\left\{\lambda^{\prime \prime} \mathrm{i} \nu \mathrm{i} \xi-\mu^{\prime \prime}\right\}$ |
| 17 | 32 | $\{-\lambda-\mathrm{i} \nu \mathrm{i} \xi \mu\}$ | $\left\{-Q_{z} Q_{x}-Q_{y} S_{z}-S_{x}-S_{y}\right\}\left\{\lambda^{\prime \prime} \mathrm{i} \nu^{\prime \prime} \mathrm{i} \xi-\mu^{\prime \prime}\right\}$ | |
| 18 | 12 | $\{-\lambda \xi-\nu \mu\}$ | $\left\{-Q_{z} Q_{y} Q_{x} S_{z} S_{y}-S_{x}\right\}$ | $\left\{\lambda^{\prime \prime}-\xi^{\prime \prime} \nu^{\prime \prime}-\mu^{\prime \prime}\right\}$ |
| 19 | 12 | $\{\nu \xi \lambda \mu\}$ | $\left\{S_{x}-S_{y}-S_{z}-Q_{x}-Q_{y} Q_{z}\right\}\left\{-\nu^{\prime \prime}-\xi^{\prime \prime}-\lambda^{\prime \prime}-\mu^{\prime \prime}\right\}$ | |
| 20 | 1 | $\{-\lambda-\mu-\nu-\xi\}$ | $\left\{S_{x} S_{y} S_{z} Q_{x} Q_{y} Q_{z}\right\}$ | $\left\{\lambda^{\prime \prime} \mu^{\prime \prime} \nu^{\prime \prime} \xi^{\prime \prime}\right\}$ |

irrep, based on S and Q, are easily converted into rotations. For example, the representative permutation from class $11,\left\{-S_{z}-S_{y}-S_{x} Q_{z} Q_{y}-Q_{x}\right\}$, corresponds to a product of three rotations: the first by $-\pi / 2$ about the y-axis in quasispin space, the second by π about the z-axis in spin space and the third a rotation by $\pi / 2$ about the y-axis in spin space. Some operators in the 6 -dimensional irrep, for example, those from classes 1 and 20, are identical and we must determine the form of the corresponding rotations by appealing to the known transformations of the 4 -dimensional bases with $S=\frac{1}{2}$ and $Q=\frac{1}{2}$. Once we have the rotation operators, their matrix elements are evaluated using angular momentum theory. It is a straightforward matter to find the new class structure when we augment the representation matrices by $-I$, the matrix of the operation corresponding to rotation by 2π in both spin and quasispin space. It turns out that five new classes appear, deriving from classes $1,3,10,11$ and 13 . We denote these as classes $1^{*}, 3^{*}, 10^{*}, 11^{*}$ and 13^{*}. Thus W_{4}^{*} has five new representations $\left(\Gamma_{21}-\Gamma_{25}\right)$ whose characters we have worked out and tabulated in table 2 . In table 2 we give only those characters for the new irreps of W_{4}^{*}. The complete character table for W_{4}^{*} can be obtained by augmenting Littlewood's table [19] with the entries of table 2 and noting that for the single-valued irreps, the characters for the new classes C^{*} satisfy the relation $\chi\left(C^{*}\right)=\chi(C)$, where C is the class in W_{4} from which C^{*} is derived.

3.1. A subgroup of W_{4}

The group W_{4} is too general for our purposes, since it contains an element interchanging the spin and quasispin. We usually wish to work within a single irrep of $\mathrm{SO}_{Q}(3) \times \mathrm{SO}_{s}(3)$
Table 2. The characters for the new irreps of W_{4}^{*}. Columns are labelled by the class and below the class label, the number of elements in that class. The full character table may be obtained by adding this table to Littlewood's character table [19] and using the relation $\chi\left(C^{*}\right)=\chi(C)$ (see section 3) for the single-valued irreps.

	1	1*	2 8	12	${ }^{3}{ }^{\text {* }}$	24	12	64	7 48	48	8	10 32		11 48	$\begin{aligned} & 11^{*} \\ & 48 \end{aligned}$	12 96	13 12	$13 *$ 12	14		16	17 64	18 24	19 24	20 2
	1	1	8	12	12	24	12	64	48	48	8	32	32	48	48	96	12	12	48	24	64	64	24		
Γ_{21}	4	-4	0	$2(2)^{1 / 2}$	$-2(2)^{1 / 2}$	0	0	0	0	0	0	2	-2	(2) ${ }^{1 / 2}$	$-(2)^{1 / 2}$	0	2	-2	0	0	0	0	0	0	0
Γ_{22}	4	-4	0	$-2(2)^{1 / 2}$	2(2) ${ }^{1 / 2}$	0	0	0	0	0	0	2	-2	-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	0	2	-2	0	0	0	0	0	0	0
r_{23}	8	-8	0	0	0	0	0	0	0	0	0	-2	2	0	(2)	0	4	-4	0	0	0	0	0	0	0
Γ_{24}	12	-12	0	$2(2)^{1 / 2}$	$-2(2)^{1 / 2}$	0	0	0	0	0	0	0	0	$-(2)^{1 / 2}$	(2) ${ }^{1 / 2}$	0	-2	2	0	0	0	0	0	0	0
Γ_{25}	12	-12	0	$-2(2)^{1 / 2}$	$2(2)^{1 / 2}$	0	0		0	0	0	0	0	(2) ${ }^{1 / 2}$	$-(2)^{1 / 2}$	0	-2	2	0	0	0	0	0	0	0

Table 5. The characters for the new irreps of SW4. Columns are labelled by the class and below the class label, the number of elements in that class. The full character table may be obtained by adding this table to table 4 and using the relation $\chi\left(C^{*}\right)=\chi(C)$ for the single-valued irreps (see section 3.1).

	1	${ }^{1 *}$	3	3^{*}	5	8	10	${ }^{10}{ }^{*}$	11	11^{*}	11^{\prime}	$11_{11^{\prime *}}$	13		13^{\prime}			$15 *$ 12	16 32	$\begin{aligned} & 16^{*} \\ & 32 \end{aligned}$	19 24	20 1	20 1
	1	1.	12	12	12	48	32	32	24	24	24	24	6	6	6	6	12	12	32	32	24	1	
Γ_{14}	2	-2	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0	0	1	-1	0	0	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0	0	2	-2	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	1	-1	0	2	-2
Γ_{15}	2	-2	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0	0	1	-1	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0	0	2	-2	0	0	-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	-1	1	0	-2	2
Γ_{16}	2	-2	-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	1	-1	0	0	-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	2	-2	-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	1	-1	0	2	-2
Γ_{17}	2	-2	$-(2)^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	1	-1	$-(2)^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	2	2	0	0	(2) ${ }^{1 / 2}$	$-(2)^{1 / 2}$	-1	1	0	-2	2
Γ_{18}	6	-6	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0	0	0	0	0	0	$-(2)^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	-2	2	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0		0	6	-6
Γ_{19}	6	-6	(2) ${ }^{1 / 2}$	$-(2)^{1 / 2}$	0	0	0	0	$-(2)^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	-2	2	0	0	-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	0	-6	6
Γ_{20}	6	-6	$-(2)^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	0	0	0	0	(2) ${ }^{1 / 2}$	$-(2)^{1 / 2}$	0	0	-2		-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	0	6	-6
r_{21}	6	-6	-(2) ${ }^{1 / 2}$	(2) ${ }^{1 / 2}$	0	0	0	0	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0	0	-2	2	0	0	(2) ${ }^{1 / 2}$	-(2) ${ }^{1 / 2}$	0	0	0	-6	6
r_{22}	4	-4	0	0	0	0	-1	1	0	0	0	0	0	0	4	-4	0	0	-1	1	-	4	-4
Γ_{23}	4	-4	0	0	0	0	-1	1	0	0	0	0	4	-4	0	0	0	0	1	-1	0	-4	4

and so restrict our attention accordingly. The group we seek is obtained simply by striking out those entries in table 1 for which the $Q s$ appear to the left of the $S \mathrm{~s}$. In other words we remove all elements in classes $2,4,6,7,9,12,14,17$ and 18 . The remaining 192 elements again form a group. This group has been studied by Baake et al $[20,21]$ who denote it as SW_{4}. We have used standard techniques (see for example, [22]) to work out its classes and characters. In table 3 we list a representative element from each class for the 4 - and 6 -dimensional representations considered earlier. Our notation is designed to indicate from which class of W_{4} the classes of SW_{4} derive. For example, class 13 of W_{4} gives rise to two classes in $\mathrm{SW}_{4}, 13$ and 13 '; the reason being that the elements needed to put the members of classes 13 and 13^{\prime} into the same

Table 3. Listing of the classes of the group SW_{4}. The number of elements in a class is listed under the heading D; columns 3 and 4 contain representative group elements for each class for the permutations of the quasiparticles (column 3) and for the components of S and Q (column 4). Classes are labelled according to their origins in W_{4}. Classes with primes attached derive from a single class of W_{4}.

Class	D	$\{a b c d\}$	$\left\{a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime}\right\}$
1	1	$\{\lambda \mu \nu \xi\}$	$\left\{S_{x} S_{y} S_{z} Q_{x} Q_{y} Q_{z}\right\}$
3	12	$\{\lambda-\xi \nu \mu\}$	$\left\{S_{z} S_{y}-S_{x}-Q_{z} Q_{y} Q_{x}\right\}$
5	6	$\{\lambda \mu-\nu-\xi\}$	$\left\{-S_{x}-S_{y} S_{z}-Q_{x}-Q_{y} Q_{z}\right\}$
8	24	$\{\lambda-\mu \mathrm{i} \xi-i \nu\}$	$\left\{S_{y} S_{x}-S_{z}-Q_{y}-Q_{x}-Q_{z}\right\}$
10	32	$\{\lambda-\mathrm{i} \nu \mathrm{i} \xi \mu\}$	$\left\{S_{z} S_{x} S_{y}-Q_{z}-Q_{x} Q_{y}\right\}$
11	24	$\{-\mathrm{i} \mu \mathrm{i} \nu \mathrm{i} \xi \mathrm{i} \lambda\}$	$\left\{-S_{z}-S_{y}-S_{x} Q_{z} Q_{y}-Q_{x}\right\}$
11^{\prime}	24	$\{i \mu-\mathrm{i} \nu \mathrm{i} \xi \mathrm{i} \lambda\}$	$\left\{S_{z} S_{y}-S_{x}-Q_{z}-Q_{y}-Q_{x}\right\}$
13	6	$\{-\nu-\xi \lambda \mu\}$	$\left\{-S_{x} S_{y}-S_{z} Q_{x} Q_{y} Q_{z}\right\}$
13^{\prime}	6	$\{\nu-\xi-\lambda \mu\}$	$\left\{S_{x} S_{y} S_{z}-Q_{x} Q_{y}-Q_{z}\right\}$
15	12	$\{-\lambda-\xi-\nu \mu\}$	$\left\{-S_{z} S_{y} S_{x} Q_{z} Q_{y}-Q_{x}\right\}$
16	32	$\{-\lambda \mathrm{i} \nu \mathrm{i} \xi \mu\}$	$\left\{-S_{z}-S_{x} S_{y} Q_{z} Q_{x} Q_{y}\right\}$
19	12	$\{\nu \xi \lambda \mu\}$	$\left\{S_{x}-S_{y}-S_{z}-Q_{x}-Q_{y} Q_{z}\right\}$
20	1	$\{-\lambda-\mu-\nu-\xi\}$	$\left\{S_{x} S_{y} S_{z} Q_{x} Q_{y} Q_{z}\right\}$

Table 4. The characters for the irreps of SW_{4}. Columns are labelled by the class and below the class label, the number of elements in that class.

	1	3	5	8	10	11	11^{\prime}	13	13^{\prime}	15	16	19	20
	1	12	6	24	32	24	24	6	6	12	32	12	1
Γ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1
Γ_{2}	1	-1	1	-1	1	-1	-1	1	1	-1	1	1	1
Γ_{3}	2	0	2	0	-1	0	0	2	2	0	-1	2	2
Γ_{4}	3	1	3	1	0	-1	-1	-1	-1	1	0	-1	3
Γ_{5}	3	-1	3	-1	0	1	1	-1	-1	-1	0	-1	3
Γ_{6}	3	1	-1	-1	0	-1	1	-1	3	1	0	-1	3
Γ_{7}	3	1	-1	-1	0	1	-1	3	-1	1	0	-1	3
Γ_{8}	3	-1	-1	1	0	1	-1	-1	3	-1	0	-1	3
Γ_{4}	3	-1	-1	1	0	-1	1	3	-1	-1	0	-1	3
Γ_{10}	6	0	-2	0	0	0	0	-2	-2	0	0	2	6
Γ_{11}	4	2	0	0	1	0	0	0	0	-2	-1	0	-4
Γ_{12}	4	-2	0	0	1	0	0	0	0	2	-1	0	-4
Γ_{13}	8	0	0	0	-1	0	0	0	0	0	1	0	-8

conjugacy class are of the type that interchange spin and quasispin and are not present in SW_{4}. For SW_{4}, the 6 -dimensional representation is not irreducible; it transforms as $\Gamma_{6}+\Gamma_{7}$. The 4-dimensional representation remains irreducible and transforms as Γ_{11}. The character table for $S W_{4}$ is presented in table 4, where we see again that $S W_{4}$ is itself a double group. We shall be interested in bases for irreps of SW_{4} with integral spin and half-integral quasispin and so shall need to consider SW_{4}^{*}, the double group of SW_{4}. Following the procedure outlined in section 3 for W_{4}, we find that 10 new classes appear for SW_{4}^{*} and hence 10 new irreps, $\Gamma_{14}-\Gamma_{23}$. In table 5 we give the characters for these new irreps and again appeal to the relation $\chi\left(C^{*}\right)=\chi(C)$ to get the characters of the single-valued irreps for the new classes.

4. U(2 $\left.{ }^{\text {I }}\right)$ and complementarity

Diagonalizing an operator that is a scalar with respect to SW_{4}^{*} in an $\mathrm{SO}_{S}(3) \times \mathrm{SO}_{Q}(3)$ basis yields states that transform as bases for irreps of SW_{4}^{*}. We know that the $\mathrm{U}(8)$ generators are invariant under W_{4}^{*} transformations and hence under SW_{4}^{*} transformations also; so by diagonalizing the $\mathrm{U}(8)$ generators we obtain states transforming as bases for SW_{4}^{*} irreps which have, at the same time, good $\mathbf{U (8)}$ labels. Under certain circumstances the reverse of this argument may be true, that is, by diagonalizing a suitably chosen SW_{4}^{*} scalar we get states that transform as bases for irreps of $\mathrm{U}(8)$. This idea is familiar to us from atomic physics, where the diagonalization of \boldsymbol{Q}^{2} and S^{2}, both of which commute with the generators of $\mathrm{SO}(2 l+1)$, yields states with good $S O(2 l+1)$ symmetry. The labels obtained this way, namely, Q and S on the one hand and the $\operatorname{SO}(2 l+1)$ irrep labels on the other, are complementary in the sense of Moshinsky and Quesne [8]. That is, specifying S and Q uniquely determines the $\mathrm{SO}(2 l+1)$ labels.

A good candidate for an SW_{4}^{*} scalar, to play an analogous role to that of \boldsymbol{Q}^{2} and S^{2}, is

$$
\begin{equation*}
2 Q_{0}^{(2)} S_{0}^{(2)}+\left(Q_{2}^{(2)}+Q_{-2}^{(2)}\right)\left(S_{2}^{(2)}+S_{-2}^{(2)}\right) \tag{8}
\end{equation*}
$$

where $\boldsymbol{Q}^{(2)}$ and $\boldsymbol{S}^{(2)}$ are rank-2 tensors, with arbitrary strengths, in the quasispin and spin spaces. The K, κ, M_{K} and M_{κ} structure of (8) matches that of the third of equations (4) except for an ineffective part with $\left(K_{\kappa}\right)=(00)$. We find that by diagonalizing equation (8) in the bases $(Q, S)=\left(0, \frac{1}{2}\right),\left(0, \frac{3}{2}\right),\left(0, \frac{5}{2}\right),\left(1, \frac{1}{2}\right),\left(1, \frac{3}{2}\right)$ and $\left(2, \frac{1}{2}\right)$ we obtain just those states for the d shell calculated earlier by diagonalizing the many-electron $\mathrm{U}(4)$ generators [3]. It turns out that there is a one-to-one correspondence, for Q integral and S half-integral, between the $U(4)$ irreps and the $S W_{4}^{*}$ irreps and so we can say that $S W_{4}^{*}$ is the complementary group to $U(4)$. The same correspondence exists for the case of Q half-integral and S integral. If we follow the definition of Moshinsky and Quesne [8] in the strictest sense, our statements concerning complementarity are not quite correct since the correspondence should hold for a single irrep of SW ${ }_{4}^{*}$. However, by limiting our attention to one half of the atomic shell we are assured that our remarks are not in error; and should the need arise we can always rephrase our language in terms of W_{4}^{*} for which the correspondence is unique. We find by direct calculation that an analogous relationship holds for the irreps of $U(8)$ and those of SW_{4}^{*} for the f shell, and it is seems likely that SW_{4}^{*} (or strictly speaking W_{4}^{*}) is the complementary group to $U\left(2^{i}\right)$. The correspondence between irreps of $U(8)$ and SW_{4}^{*}
for Q half-integral (integral) and S integral (half-integral) is as follows:

$$
\begin{align*}
& {[4] \approx \Gamma_{15}\left(\Gamma_{14}\right)} \\
& {[31] \simeq \Gamma_{19}\left(\Gamma_{18}\right)} \\
& {[22] \simeq \Gamma_{23}\left(\Gamma_{22}\right)} \tag{9}\\
& {[211] \simeq \Gamma_{21}\left(\Gamma_{20}\right)} \\
& {[1111] \approx \Gamma_{17}\left(\Gamma_{16}\right) .}
\end{align*}
$$

Because of the isomorphism between $\mathrm{U}(4)$ and $\mathrm{SO}(6), \mathrm{W}_{4}^{*}$ serves as the complementary group to both; however, this is not the case for higher l, and we must attempt to construct SW_{4}^{*} scalars that can separate the $\mathrm{U}\left(2^{i}\right)$ states on the basis of the groups appearing in the sequences (i). For f electrons we need an operator with $K=3$ and $\kappa=3$ in order to correctly match the spin and quasispin of the fourth of equations (4), and which can change M_{Q} and M_{S} by 0 or ± 2, subject to the restrictions discussed in section 2.1. We can see from table 6 that only one SW_{4}^{*} scalar can be constructed from tensors for which $K=\kappa=3$, and the following operator has all the required properties:

$$
\begin{equation*}
\left(Q_{2}^{(3)}-Q_{-2}^{(3)}\right)\left(S_{2}^{(3)}-S_{-2}^{(3)}\right) \tag{10}
\end{equation*}
$$

Table 6. Branching rules for the reduction $\mathrm{SO}_{Q}(3) \times \mathrm{SO}_{S}(3) \rightarrow \mathrm{SW}_{4}^{*}$.

Q	S	Γ_{i}
0	0	Γ_{1}
0	$\frac{1}{2}$	Γ_{14}
$\frac{1}{2}$	0	Γ_{15}
0	1	Γ_{6}
1	0	Γ_{7}
0	$\frac{3}{2}$	Γ_{22}
$\frac{3}{2}$	0	Γ_{23}
0	2	$\Gamma_{3}+\Gamma_{8}$
2	0	$\Gamma_{3}+\Gamma_{9}$
$\frac{1}{2}$	2	$\Gamma_{21}+\Gamma_{23}$
2	$\frac{1}{2}$	$\Gamma_{20}+\Gamma_{22}$
0	3	$\Gamma_{2}+\Gamma_{6}+\Gamma_{8}$
3	0	$\Gamma_{2}+\Gamma_{7}+\Gamma_{9}$
0	4	$\Gamma_{1}+\Gamma_{3}+\Gamma_{7}+\Gamma_{9}$
4	0	$\Gamma_{1}+\Gamma_{3}+\Gamma_{6}+\Gamma_{8}$
$\frac{1}{2}$	1	Γ_{19}
1	$\frac{1}{2}$	Γ_{18}
1	1	$\Gamma_{4}+\Gamma_{10}$
1	$\frac{3}{2}$	$\Gamma_{18}+\Gamma_{20}$
$\frac{3}{2}$	1	$\Gamma_{19}+\Gamma_{21}$
$\frac{3}{2}$	$\frac{3}{2}$	$\Gamma_{11}+\Gamma_{12}+\Gamma_{13}$
$\frac{3}{2}$	2	$\Gamma_{15}+\Gamma_{19}+\Gamma_{19}+\Gamma_{21}+\Gamma_{23}$
2	$\frac{3}{2}$	$\Gamma_{14}+\Gamma_{16}+\Gamma_{18}+\Gamma_{20}+\Gamma_{22}$
2	2	$\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{6}+\Gamma_{7}+\Gamma_{8}+\Gamma_{9}+\Gamma_{10}$
2	$\frac{5}{2}$	$\Gamma_{15}+\Gamma_{17}+2 \Gamma_{19}+\Gamma_{21}+2 \Gamma_{23}$
$\frac{5}{2}$	2	$\Gamma_{14}+\Gamma_{16}+2 \Gamma_{18}+\Gamma_{20}+2 \Gamma_{22}$
3	3	$\Gamma_{1}+2 \Gamma_{4}+2 \Gamma_{5}+\Gamma_{6}+\Gamma_{7}+\Gamma_{8}+\Gamma_{9}+4 \Gamma_{10}$
4	4	$2 \Gamma_{1}+\Gamma_{2}+3 \Gamma_{3}+2 \Gamma_{4}+2 \Gamma_{5}+3 \Gamma_{5}+3 \Gamma_{7}+3 \Gamma_{8}+3 \Gamma_{9}+4 \Gamma_{10}$

In table 7 we give the $U(8)$ and $S O(8)$ classification of the states of the f shell obtained using equations (8) and (10). Only one quarter of the states are listed; those with parity labels gg , gu and ug can be obtained using the following equations:

$$
\begin{array}{lcc}
M_{S}^{\mathrm{gu}}=-M_{S}^{\mathrm{ug}} & M_{Q}^{\mathrm{gu}}=-M_{Q}^{\mathrm{ug}} & M_{S}^{\mathrm{uu}}=M_{Q}^{\mathrm{ug}} \tag{11}\\
M_{Q}^{\mathrm{uu}}=M_{S}^{\mathrm{ug}} & M_{S}^{\mathrm{gg}}=-M_{S}^{\mathrm{uu}} & M_{Q}^{\mathrm{gg}}=-M_{Q}^{\mathrm{uu}} .
\end{array}
$$

Table 7. States of the f shell with parities uu. The labels a, b, c attached to the irreducible representations of $S O(8)$ distinguish states on the basis of the $U(8)$ representations specified in the adjacent column for the spin-up and spin-down spaces. The quasispins Q and spins S are indicated by prefaced multiplicities $2 Q+1$ and $2 S+1$ to W.

U(8)	SO(8)	$\mathrm{U}_{\mathrm{A}}(8) \times \mathrm{U}_{\mathrm{B}}(8)$	$\left\|M_{Q}, M_{S},{ }^{2 Q+12 S+1} W\right\rangle$
[4]	(4000)	[2] \times [2]	$\left\|-\frac{1}{2}, 0,{ }^{21}(222)\right\rangle$
	(2000)	[2] \times [2]	$\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2}, 0,{ }^{45}(111)\right\rangle+\frac{1}{2}\left\|\frac{3}{2}, 2,{ }^{45}(111)\right\rangle+\frac{1}{2}\left\|\frac{3}{2},-2,{ }^{45}(111)\right\rangle$
	(0000)	[2] \times [2]	$\left(\frac{7}{12}\right)^{1 / 2}\left\|-\frac{1}{2}, 0,{ }^{81}(000)\right\rangle+\left(\frac{5}{12}\right)^{1 / 2}\left\|\frac{7}{2}, 0,{ }^{81}(000)\right\rangle$
[31]	(3100) ${ }_{\text {a }}$	[2] \times [2]	$\left\|-\frac{1}{2}, 0,{ }^{23}(221)\right\rangle,\left\|-\frac{1}{2}, 0,{ }^{43}(211)\right\rangle$
	(3100) ${ }_{\text {b }}$	[11] \times [2]	$\left.\left\|\frac{1}{2}, 1,{ }^{23}(221)\right\rangle,\left(\frac{3}{4}\right)^{1 / 2}\left\|-\frac{3}{2},-1,{ }^{43}(211)\right\rangle+\frac{1}{2} \frac{1}{2}, 1,{ }^{43}(211)\right\rangle$
	$(3100)_{\text {c }}$	[2] \times [11]	$\left\langle\frac{1}{2},-1,{ }^{23}(221)\right\rangle,\left(\frac{1}{4}\right)^{1 / 2}\left\|-\frac{3}{2}, 1,{ }^{43}(211)\right\rangle+\frac{1}{2}\left\|\frac{1}{2},-1,{ }^{43}(211)\right\rangle$
	(2000) ${ }_{\text {a }}$	[2] \times [2]	$\left(\frac{1}{2}\right)^{1 / 2}\left\|\frac{3}{2}, 2,{ }^{45}(111)\right\rangle-\left(\frac{1}{2}\right)^{1 / 2}\left\|\frac{3}{2},-2,{ }^{45}(111)\right\rangle$
	(2000) ${ }_{\text {b }}$	[11] \times [2]	$\frac{1}{2}\left\|-\frac{3}{2},-1,{ }^{45}(111)\right\rangle+\left(\frac{3}{4}\right)^{1 / 2}\left\|\frac{1}{2}, 1,{ }^{45}(111)\right\rangle$
	(2000) ${ }_{\text {c }}$	[2] \times [11]	$\frac{1}{2}\left\|-\frac{3}{2}, 1,{ }^{45}(111)\right\rangle+\left(\frac{3}{4}\right)^{1 / 2}\left\|\frac{1}{2},-1,{ }^{45}(111)\right\rangle$
	$(1100)_{\mathrm{a}}$	[2] \times [2]	$\left\|-\frac{1}{2}, 0,{ }^{63}(110)\right\rangle,\left\|-\frac{1}{2}, 0,{ }^{27}(100)\right\rangle$
	(1100) ${ }_{\text {b }}$	[11] \times [2]	
	(1100) ${ }_{\text {c }}$	[2] \times [11]	$\begin{aligned} & \left(\frac{1}{8}\right)^{1 / 2}\left\|-\frac{3}{2}, 1,{ }^{63}(110)\right\rangle+\frac{1}{2}\left\|\frac{1}{2},-1,{ }^{63}(10)\right\rangle+\left(\frac{5}{8}\right)^{1 / 2}\left\|\frac{5}{2}, 1,{ }^{63}(110)\right\rangle, \\ & \left.\left(\frac{1}{8}\right)^{1 / 2}\left\|\frac{1}{2},-1,-1,(100)\right\rangle+\left(\frac{5}{8}\right)^{1 / 2} \right\rvert\, \frac{1}{2}, 3,{ }^{27}(100) \end{aligned}$
[22]	(2200) ${ }_{\text {a }}$	[11] \times [11]	$\left\|\frac{3}{2}, 0,{ }^{41}(220)\right\rangle,\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2}, 2,{ }^{25}(210)\right\rangle+\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2},-2,{ }^{25}(210)\right\rangle$, $\left(\frac{1}{6}\right)^{1 / 2}\left\|\frac{3}{2}, 0,{ }^{61}(200)\right\rangle+\left(\frac{5}{6}\right)^{1 / 2}\left\|-\frac{5}{2}, 0,{ }^{61}(200)\right\rangle$
	(2200) ${ }_{\text {b }}$	[2] \times [2]	$\left.\left\|-\frac{1}{2}, 0,{ }^{41}(220)\right\rangle,\left\|-\frac{1}{2}, 0,{ }^{25}(210)\right\rangle, \left\lvert\,-\frac{1}{2}\right., 0,{ }^{61}(200)\right)$
	(2000) ${ }_{\text {a }}$	[11] \times [11]	$\left(\frac{1}{2}\right)^{1 / 2}\left\|\frac{3}{2}, 0,{ }^{45}(111)\right\rangle+\frac{1}{2}\left\|-\frac{1}{2}, 2,{ }^{45}(111)\right\rangle+\frac{1}{2}\left\|-\frac{1}{2},-2,{ }^{45}(111)\right\rangle$
	(2000) ${ }_{\text {b }}$	[2] \times [2]	$\left.\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2}, 0,{ }^{45}(111)\right\rangle-\left.\frac{1}{2}\right\|^{\frac{3}{2}}, 2,{ }^{45}(111)\right\rangle-\frac{1}{2}\left\|\frac{3}{2},-2,{ }^{45}(111)\right\rangle$
	(0000) ${ }_{\text {a }}$	[11] \times [11]	$\left(\frac{3}{4}\right)^{1 / 2}\left\|\frac{1}{2}, 0,{ }^{81}(000)\right\rangle+\frac{1}{2}\left\|-\frac{5}{2}, 0{ }^{81}(000)\right\rangle$
	$(0000)_{b}$	[2] \times [2]	$\left(\frac{5}{12}\right)^{1 / 2}\left\|-\frac{1}{2}, 0,{ }^{81}(000)\right\rangle-\left(\frac{7}{12}\right)^{1 / 2}\left[\frac{7}{2}, 0,{ }^{81}(000)\right\rangle$
[211]	(2110) ${ }_{\text {a }}$	[11] \times [11]	$\left\|\frac{3}{2}, 0,{ }^{43}(211)\right\rangle,\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2}, 2,{ }^{25}(210)\right\rangle-\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2},-2,{ }^{25}(210)\right\rangle$, $\left.\left.\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2}, 2,{ }^{45}(111)\right\rangle-\left(\frac{1}{2}\right)^{1 / 2} \right\rvert\,-\frac{1}{2},-2,{ }^{45}(111)\right)$, $\left(\frac{5}{6}\right)^{1 / 2}\left\|\frac{3}{2}, 0,{ }^{63}(110)\right\rangle-\left(\frac{1}{6}\right)^{1 / 2}\left\|-\frac{5}{2}, 0,{ }^{63}(110)\right\rangle$
	(2110) ${ }_{\text {b }}$	[11] \times [2]	$\begin{aligned} & \left.\frac{1}{2}, 1,{ }^{25}(210)\right\rangle, \frac{1}{2}\left\|-\frac{3}{2},-1,-43,(211)\right\rangle-\left(\frac{3}{4}\right)^{1 / 2}\left\|\frac{1}{2}, 1,{ }^{43}(211)\right\rangle, \\ & \left(\frac{3}{3}\right)^{1 / 2}\left\|-\frac{3}{2},-1,{ }^{45}(111)\right\rangle-\frac{1}{2}\left\|\frac{1}{2}, 1,45(111)\right\rangle, \\ & \left(\frac{5}{6}\right)^{1 / 2}\left\|-\frac{3}{2},-1,{ }^{63}(110)\right\rangle-\left(\frac{1}{6}\right)^{1 / 2}\left\|\frac{5}{2},-1,{ }^{63}(110)\right\rangle \end{aligned}$
	(2110) ${ }_{c}$	[2] \times [11]	$\left.\left\langle\frac{1}{2},-1,{ }^{25}(210)\right\rangle, \frac{1}{2}-\frac{3}{2}, 1,{ }^{43}(211)\right\rangle-\left(\frac{3}{4}\right)^{1 / 2}\left\|\frac{1}{2},-1,{ }^{43}(211)\right\rangle$, $\left.\left(\frac{3}{4}\right)^{1 / 2}\left\|-\frac{3}{2}, 1,45(111)\right\rangle-\frac{1}{2} \frac{1}{2},-1,45(111)\right\rangle$, $\left.\left.\left(\frac{5}{5}\right)^{1 / 2}\left\|-\frac{3}{2}, 1,{ }^{63}(110)\right\rangle-\left(\frac{1}{6}\right)^{1 / 2} \right\rvert\, \frac{5}{2}, 1,{ }^{63}(110)\right)$
	(1100) ${ }_{\text {a }}$	[11] \times [11]	$\left(\frac{1}{6}\right)^{1 / 2}\left\|\frac{3}{2}, 0,{ }^{63}(110)\right\rangle+\left(\frac{5}{6}\right)^{1 / 2}\left\|-\frac{5}{2}, 0,{ }^{63}(110)\right\rangle$, $\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2}, 2,{ }^{27}(100)\right\rangle+\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2},-2,{ }^{27}(100)\right\rangle$
	$(1100)_{\text {b }}$	[11] \times [2]	$\begin{aligned} & \left(\frac{1}{24}\right)^{1 / 2}\left\|-\frac{3}{2},-1,{ }^{63}(110)\right\rangle-\left(\frac{3}{4}\right)^{1 / 2}\left\|\frac{1}{2}, 1,6^{63}(110)\right\rangle+\left(\frac{5}{24}\right)^{1 / 2}\left\|\frac{5}{2},-1,{ }^{63}(110)\right\rangle, \\ & \left(\frac{5}{8}\right)^{1 / 2}\left\|\frac{1}{2}, 1,{ }^{27}(100)\right\rangle-\left(\frac{3}{3}\right)^{1 / 2}\left\|\frac{1}{2},-3,{ }^{27}(100)\right\rangle \end{aligned}$
	(1100) ${ }_{\text {c }}$	[2] \times [11]	$\begin{aligned} & \left(\frac{1}{24}\right)^{1 / 2}\left\|\frac{3}{2}, 1,{ }^{63}(110)\right\rangle-\left(\frac{3}{4}\right)^{1 / 2}\left\|\frac{1}{2},-1,{ }^{63}(110)\right\rangle+\left(\frac{5}{24}\right)^{1 / 2}\left\|\frac{5}{2}, 1,{ }^{63}(110)\right\rangle, \\ & \left(\frac{5}{5}\right)^{1 / 2}\left[\frac{1}{2},-1,-1,(100)\right\rangle-\left(\frac{2}{2}\right)^{1 / 2}\left[\frac{1}{2}, 3,{ }^{27}(100)\right\rangle \end{aligned}$
[1111]	(111-1)	[11] \times [11]	$\left(\frac{1}{2}\right)^{1 / 2}\left\|\frac{3}{2}, 0,{ }^{45}(111)\right\rangle-\frac{1}{2}\left\|-\frac{1}{2}, 2,{ }^{45}(111)\right\rangle-\frac{1}{2}\left\|-\frac{1}{2},-2,{ }^{45}(111)\right\rangle$
	(1111)	[11] \times [11]	$\begin{aligned} & \left(\frac{5}{5}\right)^{1 / 2}\left\|\frac{1}{2}, 0^{60}(200)\right\rangle-\left(\frac{1}{6}\right)^{1 / 2}\left\|-\frac{5}{2}, 0^{61}(200)\right\rangle, \\ & \left.\left(\frac{1}{2}\right)^{1 / 2}\left\|-\frac{1}{2}, 2,{ }^{27}(100)\right\rangle-\left(\frac{1}{2}\right)^{1 / 2}-\frac{1}{2},-2,{ }^{27}(100)\right\rangle, \end{aligned}$
			$\frac{1}{2}\left\|\frac{1}{2}, 0,,^{81}(000)\right\rangle-\left(\frac{3}{4}\right)^{1 / 2}\left\|-\frac{5}{2}, 0,,^{81}(000)\right\rangle$

5. Generalizations

The generalization of these ideas to higher l values is straightforward. The generators of $\mathrm{U}\left(2^{l}\right)$ are invariant under W_{4}^{*} and SW_{4}^{*} transformations and so these groups again provide the base upon which we construct our quark states. The analysis becomes more complicated due to the increasing number of (K_{κ}) values associated with the $U\left(2^{l}\right)$ generators. For g electrons, for example, we have the situation that the generators of $U(16)$ have in addition to parts with $\left(K_{K}\right)=(00),(22)$ and (33), contributions with $\left(K_{\kappa}\right)=(44)$, for which M_{K} and M_{κ} can assume the values $0, \pm 2$, or ± 4. The components M_{K} and M_{κ} do not take on these values independently: the actual values assumed are discussed below. The distribution of the ($К \kappa$) among the various generators of $\mathrm{U}(16)$ can be found by extending the analysis of Flowers [16]. The generators of the subgroups of $U(16)$, found by setting $l=4$ in equations (1), along with their various mixtures of (K_{κ}) values are as follows:

$$
\begin{align*}
& \mathrm{SO}(9): \Sigma^{\prime}\left(\theta^{2}\right)^{(1100)} \tag{00}\\
& \mathrm{SO}(10): \Sigma^{\prime}\left(\theta^{2}\right)^{(1100)}, \Sigma^{\prime}\left(\theta^{8}\right)^{(1000)} \tag{00}\\
& \mathrm{SO}(16): \Sigma^{\prime}\left(\theta^{2}\right)^{(1100)}, \Sigma^{\prime}\left(\theta^{6}\right)^{(1110)} \tag{00}
\end{align*}
$$

where the superscripted numbers give the transformation properties with respect to $\mathrm{SO}(9)$ and the primes attached to the summations have the same significance as in equations (4). $U(16)$ has one additional generator, namely $\Sigma^{\prime}\left(\theta^{4}\right)^{(1111)}$, for which $(K \kappa)=(00)$ and (22). We find by looking at table 6 that (44) of $\mathrm{SO}_{Q}(3) \times \mathrm{SO}_{S}(3)$ contains Γ_{1} of SW $_{4}^{*}$ twice, and hence we can construct two SW $_{4}^{*}$ invariants from tensors with spin and quasispin ranks of 4 . Knowing that the $U(16)$ generators cannot have parts that change M_{K} and M_{κ} by ± 1 or ± 3, we can use the octahedral eigenfunctions given by Lea et al [23] to help us construct the two following invariants:

$$
\begin{equation*}
\left(\left(\frac{5}{24}\right)^{1 / 2} Q_{4}^{(4)}+\left(\frac{14}{24}\right)^{1 / 2} Q_{0}^{(4)}+\left(\frac{5}{24}\right)^{1 / 2} Q_{-4}^{(4)}\right)\left(\left(\frac{5}{24}\right)^{1 / 2} S_{4}^{(4)}+\left(\frac{14}{24}\right)^{1 / 2} S_{0}^{(4)}+\left(\frac{5}{24}\right)^{1 / 2} S_{-4}^{(4)}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
&\left(\left(\frac{7}{24}\right)^{1 / 2} Q_{4}^{(4)}-\left(\frac{10}{24}\right)^{1 / 2} Q_{0}^{(4)}+\left(\frac{7}{24}\right)^{1 / 2} Q_{-4}^{(4)}\right)\left(\left(\frac{7}{24}\right)^{1 / 2} S_{4}^{(4)}-\left(\frac{10}{24}\right)^{1 / 2} S_{0}^{(4)}+\left(\frac{7}{24}\right)^{1 / 2} S_{-4}^{(4)}\right) \\
&+\left(Q_{2}^{(4)}+Q_{-2}^{(4)}\right)\left(S_{2}^{(4)}+S_{-2}^{(4)}\right) . \tag{14}
\end{align*}
$$

It is to be noticed that the values of the pairs (M_{K}, M_{κ}) are restricted. For example, the values $(4,2)$ and $(2,0)$ never appear; the allowed values of M_{K} and M_{κ} just match those of the $\mathrm{U}(16)$ generators. We have found that by diagonalizing some combination of the operators of equations (8), (10), (13) and (14), it is possible to obtain the states of the g shell in both schemes of equation (1). We find, for example, in the $U(16) \supset$ $\mathrm{SO}(16) \supset \mathrm{SO}(9)$ scheme the following gg parity states as linear combinations of the kets $\left|M_{Q} M_{S}{ }^{2 Q+1,2 S+1}\left(w_{1} w_{2} w_{3} w_{4}\right)\right\rangle$:
[[4] (00..0)(0000) \rangle

$$
=\left(\frac{7}{12}\right)^{1 / 2}\left|-\frac{1}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{1}{24}\right)^{1 / 2}\left|\frac{7}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{3}{8}\right)^{1 / 2}\left|-\frac{9}{2} 0^{10,1}(0000)\right\rangle
$$

|[22](00..0)(0000) \rangle

$$
\begin{equation*}
=-\left(\frac{7}{20}\right)^{1 / 2}\left|-\frac{1}{2} 0^{10,1}(0000)\right\rangle-\left(\frac{1}{40}\right)^{1 / 2}\left|\frac{7}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{5}{8}\right)^{1 / 2}\left|-\frac{9}{2} 0^{10,1}(0000)\right\rangle(\tag{15}
\end{equation*}
$$

$|[22](220 . .0)(0000)\rangle$

$$
=-\left(\frac{1}{15}\right)^{1 / 2}\left|-\frac{1}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{14}{15}\right)^{1 / 2}\left|\frac{7}{2} 0^{10,1}(0000)\right\rangle
$$

while in the $U(16) \supset S O(10) \supset S O(9)$ scheme, we have:
$|[4](20000)(0000)\rangle$

$$
=\left(\frac{7}{12}\right)^{1 / 2}\left|-\frac{1}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{1}{24}\right)^{1 / 2}\left|\frac{7}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{3}{8}\right)^{1 / 2}\left|-\frac{9}{2} 0^{10,1}(0000)\right\rangle
$$

|[22](20000)(0000) \rangle

$$
\begin{equation*}
=-\left(\frac{5}{12}\right)^{1 / 2}\left|-\frac{1}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{7}{120}\right)^{1 / 2}\left|\frac{7}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{21}{40}\right)^{1 / 2}\left|-\frac{9}{2} 0^{10,1}(0000)\right\rangle \tag{16}
\end{equation*}
$$

$|[22](00000)(0000)\rangle$

$$
=-\left(\frac{9}{10}\right)^{1 / 2}\left|\frac{7}{2} 0^{10,1}(0000)\right\rangle+\left(\frac{1}{10}\right)^{1 / 2}\left|-\frac{9}{2} 0^{10,1}(0000)\right\rangle .
$$

There appears to be no difficulty in extending this approach to cope with higher l values.

6. Complementary group to $\operatorname{SO}(7)^{\prime \prime}$

With respect to the group $\operatorname{SO}(7)^{\prime \prime}$, a single quark transforms as $\left(\frac{1}{2} \frac{1}{2}\right)^{\prime \prime}$ and the states of the f shell can be constructed by considering the product $\left(\left(\frac{1}{2} \frac{1}{2} \frac{1}{2}\right)^{\prime \prime}\right)^{4}$. The $\operatorname{SO}(7)^{\prime \prime}$ irreps appearing in this scheme are identical to those that arise for the analysis based on $\mathrm{SO}(7)$, so we anticipate a complementary group $\mathrm{SO}_{Q}(3)^{\prime \prime} \times \mathrm{SO}_{s}(3)^{\prime \prime}$ in analogy with the familiar spin and quasispin groups of classical $\operatorname{SO}(7)$ theory. An examination of the generators of $\mathrm{SO}(7)$ and $\mathrm{SO}(7)^{\prime \prime}$, as expressed in terms of the annihilation and creation operators of the quarks $s+f$ [7], reveals that one can pass from one group to the other simply by reversing the phase of the s quark relative to the f quark. However, to convert the S and \boldsymbol{Q} of equations (6) and (7) to $S^{\prime \prime}$ and $Q^{\prime \prime}$ we need the corresponding substitutions for quasiparticles. These are not so easy to obtain. Our starting point is the observation that the seven components of a tensor $\boldsymbol{\theta}$ belong to the irreps (1100), (100) and (10) of $\mathrm{SO}_{\theta}(8), \mathrm{SO}_{\theta}(7)$ and $\mathrm{G}_{2 \theta}$. The transformed θ, namely $\theta^{\prime \prime}$, must belong to (1100), (100)" and (10) of $\mathrm{SO}_{\theta}(8), \mathrm{SO}_{\theta}(7)^{\prime \prime}$ and $\mathrm{G}_{2 \theta}$. Thus (100) is replaced by $(100)^{\prime \prime}$, but the other descriptions are unchanged. The only other irrep of $S O(7)$ that derives from (1100) of $S O(8)$ and contains (10) of G_{2} is (110), and the corresponding operator can only be provided by the quintuple tensor product $\left(\boldsymbol{\theta}^{5}\right)^{(110)}$. We can conclude that the required substitutions are of the form

$$
\theta \rightarrow \theta^{\prime \prime}=A \theta+B\left(\theta^{5}\right)^{(110)(10) 3}
$$

The two coefficients A and B can be found by requiring that the components of $\theta^{\prime \prime}$ satisfy the same anticommutation relations as those of θ. In terms of the components θ_{q} of the tensors θ, we ultimately arrive at the substitutions:

$$
\begin{align*}
& \theta_{3} \rightarrow \theta_{3}^{\prime \prime}=\frac{1}{2} \theta_{3}+\frac{1}{2}\left(\theta_{3} c_{1} c_{2}+(8)^{1 / 2} \theta_{2} \theta_{1} \theta_{0} c_{3}\right) \\
& \theta_{2} \rightarrow \theta_{2}^{\prime \prime}=\frac{1}{2} \theta_{2}+\frac{1}{2}\left(\theta_{2} c_{3} c_{1}+(8)^{1 / 2} \theta_{3} \theta_{0} \theta_{-1} c_{2}\right) \\
& \theta_{1} \rightarrow \theta_{1}^{\prime \prime}=\frac{1}{2} \theta_{1}-\frac{1}{2}\left(\theta_{1} c_{3} c_{2}+(8)^{1 / 2} \theta_{3} \theta_{0} \theta_{-2} c_{1}\right) \tag{17}\\
& \theta_{0} \rightarrow \theta_{0}^{\prime \prime}=\frac{1}{2} \theta_{0}+\frac{1}{2} \theta_{0}\left(c_{1} c_{2}+c_{1} c_{3}-c_{2} c_{3}\right)
\end{align*}
$$

where

$$
c_{i}=\left[\theta_{i}, \theta_{-i}\right]
$$

Direct calculation shows that the substitutions (17) transform the generators of SO (7) into those of $\mathrm{SO}(7)^{\prime \prime}$, and vice versa, while leaving invariant the generators of $\mathrm{SO}(7)^{\prime}$.

7. Complementary group to $\operatorname{SU}(7)^{\prime}$

As an alternative to equation (1), we consider the group scheme

$$
\begin{equation*}
\mathrm{U}(8) \supset \mathrm{Y} \supset \mathrm{X} \supset \mathrm{G}_{2} \tag{18}
\end{equation*}
$$

where Y can be $\mathrm{SU}(7), \mathrm{SU}(7)^{\prime}$ or $\mathrm{SU}(7)^{\prime \prime}$ according to whether X is $\mathrm{SO}(7), \mathrm{SO}(7)^{\prime}$ or $\mathrm{SO}(7)^{\prime \prime}$. We find that the complementary group to $\mathrm{SU}(7)^{\prime}$ is a group isomorphic to W_{4}, which we denote W_{4}^{\prime}. To see this, consider the transformation $\left\{-\nu-\eta^{\prime \prime}-\lambda^{\prime \prime}-\nu^{\prime \prime}\right\}$, where now we have added double primes to some of the quasiparticles appearing in the permutation to indicate that the substitutions (17) have been made for those quasiparticles. Applying this operation to the $\mathrm{SU}(7)^{\prime}$ generators $\Sigma^{\prime}\left(\boldsymbol{\theta}^{4}\right)^{(200)^{\prime}}$ shows that they do indeed remain invariant. Other $\mathrm{SU}(7)^{\prime}$ generators are more difficult to handle when written in terms of quasiparticles, and a simpler way to proceed is to write them as $\Sigma_{\theta}\left(f_{\theta}^{\dagger} f_{\theta}\right)^{(k)}$, for $k=1,2, \ldots, 6$, noting that under the transformation $\theta \rightarrow \theta^{\prime \prime}$, we have $f_{\theta}^{\dagger} \rightarrow f_{\theta}^{\dagger}$ and $s_{\theta}^{\dagger} \rightarrow-s_{\theta}^{\dagger}$, from which the required invariance follows.

The new permutations considered above form the group W_{4}^{\prime}, obtained by adding to the group of permutations among the quasiparticles, the substitution $\theta \rightarrow \theta^{\prime \prime}$. Making this substitution twice sends $\theta \rightarrow\left(\theta^{\prime \prime}\right)^{\prime \prime} \rightarrow \theta$, so the operation of adding a double prime is formally similar to the sign change ε_{i} that we considered in section 3 . This property leads to the isomorphism between W_{4} and W_{4}^{\prime}. In table 1 we list representative groūp elements for each of the classes of W_{4}^{\prime}, which are the images of the elements of W_{4}, listed in column 3, under the isomorphism.

We are now in a position to classify the $\mathrm{SU}(7)^{\prime}$ ' states according to W_{4}^{\prime}. There are two ways to proceed; either by constructing states in the quasiparticle picture or by using our knowledge of the quarks. The first approach soon becomes very cumbersome, whereas in the second, states can be separated naturally according to the number of occurrences of a particular m_{1} component among the quark creation operators. For example, the quark states $f_{\lambda 3}^{\dagger} f_{\mu 2}^{\dagger} f_{\nu 2}^{\dagger} f_{\xi 2}^{\dagger}|0\rangle$, $f_{\lambda 2}^{\dagger} f_{\mu 3}^{\dagger} f_{\nu 2}^{\dagger} f_{\xi 2}^{\dagger}|0\rangle$, $f_{\lambda 2}^{\dagger} f_{\mu 2}^{\dagger} f_{\nu 3}^{\dagger} f_{\xi 2}^{\dagger}|0\rangle$ and $f_{\lambda 2}^{\dagger} f_{\mu 2}^{\dagger} f_{\nu 2}^{\dagger} f_{\xi 3}^{\dagger}|0\rangle$, which we denote collectively as $\{3222\}$, transform as $\Gamma_{1}+\Gamma_{9}$ of \mathbf{W}_{4}^{\prime}. The states $\{3111\},\{3000\},\{3-1-1-1\} \ldots$ behave similarly; in other words, those states obtained by acting on the quark vacuum with four f-quark creation operators, three of which have identical m_{i} values, transform as $\Gamma_{1}+\Gamma_{9}$. A similar state of affairs exists for the other possible distributions of m_{l} values among four quarks. In table 8 we list, for the configurations $f^{4-n} s^{n}$ with $0 \leqslant n \leqslant 4$, the transformation properties of the various types of states that can occur, along with the number of states of each type. The classification proceeds by starting from the state $\{3333\}$, which has $m_{t}=12$ and belongs to [4]' of $\operatorname{SU}(7)^{\prime}$, and stepping down in units of m_{l} until reaching $m_{l}=0$. At each stage those irreps of W_{4}^{\prime} already assigned to $\mathrm{SU}(7)^{\prime}$ states are subtracted out, allowing us to determine the complementary-group labels for the remaining $\mathrm{SU}(7)^{\prime}$ states. The results are as follows:

$$
\begin{align*}
& {[4]^{\prime} \approx \Gamma_{1},[31]^{\prime} \simeq \Gamma_{9},[22]^{\prime} \simeq \Gamma_{5},[211]^{\prime} \simeq \Gamma_{11}} \\
& {[3]^{\prime} \simeq \Gamma_{13},[21]^{\prime} \simeq \Gamma_{19},[111]^{\prime} \simeq \Gamma_{15}} \\
& {[2]^{\prime} \simeq \Gamma_{7},[11]^{\prime} \simeq \Gamma_{18}} \tag{19}\\
& {[1]^{\prime} \simeq \Gamma_{13}} \\
& {[0]^{\prime} \simeq \Gamma_{1} .}
\end{align*}
$$

Table 8. Transformation properties with respect to W_{4}^{\prime} of the various quark states in the configurations $f^{4-n} s^{n}(0 \leqslant n \leqslant 4)$. The symbols in braces are the m_{1} values ($-3 \leqslant m_{1} \leqslant 3$), to be distributed among the four quarks. The number of states of a particular type is listed under the heading D. An explicit zero in the braces refers to the m_{l} value of an s quark.

Configuration	D	$\left\{m_{1} m_{2} m_{3} m_{4}\right\}$	Γ_{i}
f^{4}	24	$\left\{m_{1} m_{2} m_{3} m_{4}\right\}$	$\Gamma_{1}+\Gamma_{3}+2 \Gamma_{5}+3 \Gamma_{9}+3 \Gamma_{11}$
	12	$\left\{m_{1} m_{2} m_{3} m_{3}\right\}$	$\Gamma_{1}+\Gamma_{5}+2 \Gamma_{9}+\Gamma_{11}$
	6	$\left\{m_{1} m_{1} m_{2} m_{2}\right\}$	$\Gamma_{1}+\Gamma_{5}+\Gamma_{9}$
	4	$\left\{m_{1} m_{2} m_{2} m_{2}\right\}$	$\Gamma_{1}+\Gamma_{9}$
	1	$\left\{m_{1} m_{1} m_{1} m_{1}\right\}$	Γ_{1}
$f^{3} s$	24	$\left\{m_{1} m_{2} m_{3} 0\right\}$	$\Gamma_{13}+\Gamma_{15}+2 \Gamma_{19}$
	12	$\left\{m_{1} m_{2} m_{2} 0\right\}$	$\Gamma_{13}+\Gamma_{19}$
	4	$\left\{m_{1} m_{1} m_{1} 0\right\}$	Γ_{13}
$f^{2} s^{2}$	12	$\left\{m_{1} m_{2} 00\right\}$	$\Gamma_{1}+\Gamma_{18}$
f^{3}	6	$\left\{m_{1} m_{1} 00\right\}$	Γ_{7}
s^{4}	4	$\left\{m_{1} 000\right\}$	Γ_{13}

8. Application

Much of the discussion in this paper has been of a formal nature. An example of the usefulness of the complementary group idea in the atomic quark model should serve to bring us into contact with our previous analysis. In [1] we considered the threeelectron operator t_{4}, used in configuration-interaction studies, and gave an explanation for the vanishing of the matrix element $\left\langle\mathrm{f}^{7}(222)(30)\right| t_{4}\left|\mathrm{f}^{7}(221)(31)\right\rangle$ in terms of the group $\operatorname{SO}(7)^{\prime}$. It turned out that the operator t_{4} could be expressed as a two-quark operator of the form
$\left(\left(\boldsymbol{q}_{\lambda}^{\dagger} \boldsymbol{q}_{\lambda}\right)^{(2000)}\left(\boldsymbol{q}_{\mu}^{\dagger} \boldsymbol{q}_{\mu}\right)^{(2000)}\right)^{(4000)(222)}+\left(\left(\boldsymbol{q}_{\nu}^{\dagger} \boldsymbol{q}_{\nu}\right)^{(2000)}\left(\boldsymbol{q}_{\xi}^{\dagger} \boldsymbol{q}_{\xi}\right)^{(2000)}\right)^{(4000)(222)}$
where the $\mathrm{SO}(8)$ and $\mathrm{SO}(7)$ labels are specified as superscripts. If, now, we turn to our complementary group W_{4}^{\prime} and consider the transformations of the six operators
$\left(\left(\boldsymbol{q}_{\theta}^{\dagger} \boldsymbol{q}_{\theta}\right)^{(2000)}\left(\boldsymbol{q}_{\theta}^{\dagger} \cdot \boldsymbol{q}_{\theta}\right)^{(2000)}\right)^{(4000)} \quad\left[\left(\theta \theta^{\prime}\right) \equiv(\lambda \mu),(\lambda \nu),(\lambda \xi),(\mu \nu),(\mu \xi),(\nu \xi)\right]$
it is straightforward to show that they belong to the representation $\Gamma_{1}+\Gamma_{5}+\Gamma_{9}$ and these, therefore, are the irreps available for labelling t_{4}. The states appearing in the bra and ket of the above matrix element belong to Γ_{13} and Γ_{9}, respectively, so the matrix element has the form $\left\langle\Gamma_{13}\right| \Gamma_{1}+\Gamma_{5}+\Gamma_{9}\left|\Gamma_{9}\right\rangle$, when written in terms of the complementary group representations. A matrix element with these W_{4}^{\prime} labels must vanish, since the Kronecker product $\Gamma_{13} \times \Gamma_{9}$ does not contain any of the irreps labelling the operator. Thus the complementary group W_{4}^{\prime} has provided an alternative to our earlier approach.

We anticipate other applications as we proceed to study 3-quark and 4-quark operators. Just as the dependence of the matrix elements of operators on spin or quasispin has been usefully represented in the past by the $3-j$ symbols of the groups $\mathrm{SO}_{s}(3)$ and $\mathrm{SO}_{Q}(3)$, so we expect relations between our quark operators to involve Clebsch-Gordan coefficients for our new complementary groups. The absence of useful tabulations of such coefficients means that any proportionalities we might establish
between sets of matrix elements will lack numerical coefficients; but this would be a minor price to pay for the gain in structural information.

9. Complementary group to $\mathbf{G}_{\mathbf{2}}$

Unexpected relations between matrix elements frequently occur in the f shell: indeed, they are the motivating force for the analysis presented above. Because all the states are characterized by irreps of G_{2}, it is natural to ask whether a complementary group Z to G_{2} exists, and, if so, whether the surprising simplifications that have accumulated over the years could be explained at a single stroke in terms of the irreps of Z . As pointed out some years ago [24], this possibility would not yield anything of value if Z was simply the direct product

$$
\begin{equation*}
U(4) \times U(8) \times U(12) \times \ldots \times U(60) \tag{22}
\end{equation*}
$$

where the dimensions of the unitary groups are merely the number of occurrences of the irreps (40), (31), (30), ... (00).

We are now in a position to construct a complementary group to G_{2} because we have at our disposal the four operators $S, Q, S^{\prime \prime}$ and $Q^{\prime \prime}$ which commute with the generators of G_{2}. If we take the various commutators of these four vectors, the commutators of these commutators, and so on, the fermionic character of the component creation and annihilation operators that form the resultant operators guarantees closure. Since $S^{\prime \prime}$ and $Q^{\prime \prime}$ involve quintuple products of annihilation and creation operators, the procedure is technically difficult, and there seems no reason to suppose that an interesting early closure will be obtained. We have studied in detail what happens if attention is limited just to the spin-up space, and indeed a trivial direct product of unitary groups is produced. This a rather disappointing conclusion, but not, perhaps, too surprising. After all, there is no simple Lie group with irreps with the required dimensions $4,8,12, \ldots, 60$. There remains, however, the possibility that a finite group might exist to play the role of \mathbf{Z}. It would have to be a subgroup of the product (22) and itself contain both W_{4}^{*} and W_{4}^{\prime} as subgroups. The smallest group to contain both W_{4}^{*} and W_{4}^{\prime} comprises 12288 elements. Although the structure of this group can be identified as the double group of a wreath product (of D_{2} with S_{4}) we prefer to set it aside as a topic for future study.

Acknowledgments

Partial support for this work was provided by the US National Science Foundation.

References

[^0][6] Labarthe J.J 1980 J. Phys. B: At. Mol. Phys. 13 2149-55
[7] Judd B R and Lister G M S 1992 J. Phys. B: At. Mol. Phys. 25 577-602
[8] Moshinsky M and Quesne C 1970 J. Math. Phys. 11 1631-9
[9] Couvreur G, Deenen J and Quesne C 1983 J. Math. Phys. 24 779-84
[10] Le Blanc R and Rowe D J 1985 J. Phys. A: Math. Gen. 18 1905-14
[11] Biedenharn L C, Giovannini A and Louck J D 1967 J. Math. Phys. 8 691-700
[12] Ališauskas S 1984 J. Phys. A: Math. Gen. 17 2899-926
[13] Ališauskas S 1987 J. Phys. A: Math. Gen. 20 35-45
[14] Judd B R, Leavitt R C and Lister G M S 1990 J. Phys. A: Math. Gen. 23 385-405
[15] Armstrong L. Jr and Judd B R 1970 Proc. R. Soc. A 315 27-37
[16] Flowers B H 1952 Proc. R. Soc. A 210 497-508
[17] Coxeter H S M 1948 Regular Polytopes (London: Methuen) pp 292-3
[18] Young A 1929 Proc. Lond. Math. Soc. 31 273-88
[19] Littlewood D E 1950 The Theory of Group Characters and Matrix Representations of Groups (Oxford: Oxford University Press) the first table on p 278
[20] Baake M, Gemünden B and Oedingen R 1982 J. Math. Phys. 23 944-53
[21] Baake M, Gemünden B and Oedingen R 1983 J. Math. Phys. 24 1021-4
[22] Hamermesh M 1964 Group Theory and its Applications to Physical Problems (New York: AddisonWesley)
[23] Lea R R, Leask M J M and Wolf W P 1962 J. Phys. Chem. Solids 23 1381-1405
[24] Feng C and Judd B R 1982 J. Phys. A: Math. Gen. 15 2273-84

[^0]: [1] Judd B R and Lister G M S 1991 Phys. Rev. Lett. 67 1720-2
 [2] Judd B R and Lister G M S 1992 J. de Physique in press
 [3] Judd B R and Lister G M S 1992 Quark-like structures in atomic shell theory Group Theory and Special Symmetries in Nuclear Physics ed J P Draayer and J Jänecke (Singapore: World Scientific) to be published
 [4] Georgi H 1982 Lie Algebras in Particle Physics (New York: Benjamin)
 [5] Racah G 1949 Phys. Rev. 76 1352-65

